Metamath Proof Explorer


Theorem 1to3vfriendship

Description: The friendship theorem for small graphs: In every friendship graph with one, two or three vertices, there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 6-Oct-2017) (Revised by AV, 31-Mar-2021)

Ref Expression
Hypotheses 3vfriswmgr.v V = Vtx G
3vfriswmgr.e E = Edg G
Assertion 1to3vfriendship A X V = A V = A B V = A B C G FriendGraph v V w V v v w E

Proof

Step Hyp Ref Expression
1 3vfriswmgr.v V = Vtx G
2 3vfriswmgr.e E = Edg G
3 1 2 1to3vfriswmgr A X V = A V = A B V = A B C G FriendGraph v V w V v w v E ∃! x V v w x E
4 prcom w v = v w
5 4 eleq1i w v E v w E
6 5 biimpi w v E v w E
7 6 adantr w v E ∃! x V v w x E v w E
8 7 ralimi w V v w v E ∃! x V v w x E w V v v w E
9 8 reximi v V w V v w v E ∃! x V v w x E v V w V v v w E
10 3 9 syl6 A X V = A V = A B V = A B C G FriendGraph v V w V v v w E