Metamath Proof Explorer


Theorem 1unit

Description: The multiplicative identity is a unit. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses unit.1 U = Unit R
unit.2 1 ˙ = 1 R
Assertion 1unit R Ring 1 ˙ U

Proof

Step Hyp Ref Expression
1 unit.1 U = Unit R
2 unit.2 1 ˙ = 1 R
3 eqid Base R = Base R
4 3 2 ringidcl R Ring 1 ˙ Base R
5 eqid r R = r R
6 3 5 dvdsrid R Ring 1 ˙ Base R 1 ˙ r R 1 ˙
7 4 6 mpdan R Ring 1 ˙ r R 1 ˙
8 eqid opp r R = opp r R
9 8 opprring R Ring opp r R Ring
10 8 3 opprbas Base R = Base opp r R
11 eqid r opp r R = r opp r R
12 10 11 dvdsrid opp r R Ring 1 ˙ Base R 1 ˙ r opp r R 1 ˙
13 9 4 12 syl2anc R Ring 1 ˙ r opp r R 1 ˙
14 1 2 5 8 11 isunit 1 ˙ U 1 ˙ r R 1 ˙ 1 ˙ r opp r R 1 ˙
15 7 13 14 sylanbrc R Ring 1 ˙ U