Database
BASIC ALGEBRAIC STRUCTURES
Rings
Divisibility
1unit
Next ⟩
unitcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
1unit
Description:
The multiplicative identity is a unit.
(Contributed by
Mario Carneiro
, 1-Dec-2014)
Ref
Expression
Hypotheses
unit.1
⊢
U
=
Unit
⁡
R
unit.2
⊢
1
˙
=
1
R
Assertion
1unit
⊢
R
∈
Ring
→
1
˙
∈
U
Proof
Step
Hyp
Ref
Expression
1
unit.1
⊢
U
=
Unit
⁡
R
2
unit.2
⊢
1
˙
=
1
R
3
eqid
⊢
Base
R
=
Base
R
4
3
2
ringidcl
⊢
R
∈
Ring
→
1
˙
∈
Base
R
5
eqid
⊢
∥
r
⁡
R
=
∥
r
⁡
R
6
3
5
dvdsrid
⊢
R
∈
Ring
∧
1
˙
∈
Base
R
→
1
˙
∥
r
⁡
R
1
˙
7
4
6
mpdan
⊢
R
∈
Ring
→
1
˙
∥
r
⁡
R
1
˙
8
eqid
⊢
opp
r
⁡
R
=
opp
r
⁡
R
9
8
opprring
⊢
R
∈
Ring
→
opp
r
⁡
R
∈
Ring
10
8
3
opprbas
⊢
Base
R
=
Base
opp
r
⁡
R
11
eqid
⊢
∥
r
⁡
opp
r
⁡
R
=
∥
r
⁡
opp
r
⁡
R
12
10
11
dvdsrid
⊢
opp
r
⁡
R
∈
Ring
∧
1
˙
∈
Base
R
→
1
˙
∥
r
⁡
opp
r
⁡
R
1
˙
13
9
4
12
syl2anc
⊢
R
∈
Ring
→
1
˙
∥
r
⁡
opp
r
⁡
R
1
˙
14
1
2
5
8
11
isunit
⊢
1
˙
∈
U
↔
1
˙
∥
r
⁡
R
1
˙
∧
1
˙
∥
r
⁡
opp
r
⁡
R
1
˙
15
7
13
14
sylanbrc
⊢
R
∈
Ring
→
1
˙
∈
U