Metamath Proof Explorer


Theorem 1wlkd

Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a walk. The two vertices need not be distinct (in the case of a loop). (Contributed by AV, 22-Jan-2021) (Revised by AV, 23-Mar-2021)

Ref Expression
Hypotheses 1wlkd.p P=⟨“XY”⟩
1wlkd.f F=⟨“J”⟩
1wlkd.x φXV
1wlkd.y φYV
1wlkd.l φX=YIJ=X
1wlkd.j φXYXYIJ
1wlkd.v V=VtxG
1wlkd.i I=iEdgG
Assertion 1wlkd φFWalksGP

Proof

Step Hyp Ref Expression
1 1wlkd.p P=⟨“XY”⟩
2 1wlkd.f F=⟨“J”⟩
3 1wlkd.x φXV
4 1wlkd.y φYV
5 1wlkd.l φX=YIJ=X
6 1wlkd.j φXYXYIJ
7 1wlkd.v V=VtxG
8 1wlkd.i I=iEdgG
9 1 2 3 4 5 6 1wlkdlem3 φFWorddomI
10 1 2 3 4 1wlkdlem1 φP:0FV
11 1 2 3 4 5 6 1wlkdlem4 φk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
12 7 1vgrex XVGV
13 7 8 iswlkg GVFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
14 3 12 13 3syl φFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
15 9 10 11 14 mpbir3and φFWalksGP