Database
GRAPH THEORY
Walks, paths and cycles
Examples for walks, trails and paths
1wlkdlem3
Next ⟩
1wlkdlem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
1wlkdlem3
Description:
Lemma 3 for
1wlkd
.
(Contributed by
AV
, 22-Jan-2021)
Ref
Expression
Hypotheses
1wlkd.p
⊢
P
=
〈“
X
Y
”〉
1wlkd.f
⊢
F
=
〈“
J
”〉
1wlkd.x
⊢
φ
→
X
∈
V
1wlkd.y
⊢
φ
→
Y
∈
V
1wlkd.l
⊢
φ
∧
X
=
Y
→
I
⁡
J
=
X
1wlkd.j
⊢
φ
∧
X
≠
Y
→
X
Y
⊆
I
⁡
J
Assertion
1wlkdlem3
⊢
φ
→
F
∈
Word
dom
⁡
I
Proof
Step
Hyp
Ref
Expression
1
1wlkd.p
⊢
P
=
〈“
X
Y
”〉
2
1wlkd.f
⊢
F
=
〈“
J
”〉
3
1wlkd.x
⊢
φ
→
X
∈
V
4
1wlkd.y
⊢
φ
→
Y
∈
V
5
1wlkd.l
⊢
φ
∧
X
=
Y
→
I
⁡
J
=
X
6
1wlkd.j
⊢
φ
∧
X
≠
Y
→
X
Y
⊆
I
⁡
J
7
1
2
3
4
5
6
1wlkdlem2
⊢
φ
→
X
∈
I
⁡
J
8
elfvdm
⊢
X
∈
I
⁡
J
→
J
∈
dom
⁡
I
9
s1cl
⊢
J
∈
dom
⁡
I
→
〈“
J
”〉
∈
Word
dom
⁡
I
10
2
9
eqeltrid
⊢
J
∈
dom
⁡
I
→
F
∈
Word
dom
⁡
I
11
7
8
10
3syl
⊢
φ
→
F
∈
Word
dom
⁡
I