Metamath Proof Explorer


Theorem 2503lem3

Description: Lemma for 2503prm . Calculate the GCD of 2 ^ 1 8 - 1 == 1 8 3 1 with N = 2 5 0 3 . (Contributed by Mario Carneiro, 3-Mar-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 15-Sep-2021)

Ref Expression
Hypothesis 2503prm.1 N = 2503
Assertion 2503lem3 2 18 1 gcd N = 1

Proof

Step Hyp Ref Expression
1 2503prm.1 N = 2503
2 2nn 2
3 1nn0 1 0
4 8nn0 8 0
5 3 4 deccl 18 0
6 nnexpcl 2 18 0 2 18
7 2 5 6 mp2an 2 18
8 nnm1nn0 2 18 2 18 1 0
9 7 8 ax-mp 2 18 1 0
10 3nn0 3 0
11 5 10 deccl 183 0
12 11 3 deccl 1831 0
13 2nn0 2 0
14 5nn0 5 0
15 13 14 deccl 25 0
16 0nn0 0 0
17 15 16 deccl 250 0
18 3nn 3
19 17 18 decnncl 2503
20 1 19 eqeltri N
21 1 2503lem1 2 18 mod N = 1832 mod N
22 1p1e2 1 + 1 = 2
23 eqid 1831 = 1831
24 11 3 22 23 decsuc 1831 + 1 = 1832
25 20 7 3 12 21 24 modsubi 2 18 1 mod N = 1831 mod N
26 6nn0 6 0
27 7nn0 7 0
28 26 27 deccl 67 0
29 28 13 deccl 672 0
30 4nn0 4 0
31 30 4 deccl 48 0
32 31 27 deccl 487 0
33 5 14 deccl 185 0
34 3 3 deccl 11 0
35 34 27 deccl 117 0
36 26 4 deccl 68 0
37 9nn0 9 0
38 30 37 deccl 49 0
39 3 37 deccl 19 0
40 38 nn0zi 49
41 39 nn0zi 19
42 gcdcom 49 19 49 gcd 19 = 19 gcd 49
43 40 41 42 mp2an 49 gcd 19 = 19 gcd 49
44 9nn 9
45 3 44 decnncl 19
46 1nn 1
47 3 46 decnncl 11
48 eqid 19 = 19
49 eqid 11 = 11
50 2cn 2
51 50 mulid2i 1 2 = 2
52 51 22 oveq12i 1 2 + 1 + 1 = 2 + 2
53 2p2e4 2 + 2 = 4
54 52 53 eqtri 1 2 + 1 + 1 = 4
55 8p1e9 8 + 1 = 9
56 9t2e18 9 2 = 18
57 3 4 55 56 decsuc 9 2 + 1 = 19
58 3 37 3 3 48 49 13 37 3 54 57 decmac 19 2 + 11 = 49
59 1lt9 1 < 9
60 3 3 44 59 declt 11 < 19
61 45 13 47 58 60 ndvdsi ¬ 19 49
62 19prm 19
63 coprm 19 49 ¬ 19 49 19 gcd 49 = 1
64 62 40 63 mp2an ¬ 19 49 19 gcd 49 = 1
65 61 64 mpbi 19 gcd 49 = 1
66 43 65 eqtri 49 gcd 19 = 1
67 eqid 49 = 49
68 4cn 4
69 68 mulid2i 1 4 = 4
70 69 22 oveq12i 1 4 + 1 + 1 = 4 + 2
71 4p2e6 4 + 2 = 6
72 70 71 eqtri 1 4 + 1 + 1 = 6
73 9cn 9
74 73 mulid2i 1 9 = 9
75 74 oveq1i 1 9 + 9 = 9 + 9
76 9p9e18 9 + 9 = 18
77 75 76 eqtri 1 9 + 9 = 18
78 30 37 3 37 67 48 3 4 3 72 77 decma2c 1 49 + 19 = 68
79 3 39 38 66 78 gcdi 68 gcd 49 = 1
80 eqid 68 = 68
81 6cn 6
82 81 mulid2i 1 6 = 6
83 4p1e5 4 + 1 = 5
84 82 83 oveq12i 1 6 + 4 + 1 = 6 + 5
85 6p5e11 6 + 5 = 11
86 84 85 eqtri 1 6 + 4 + 1 = 11
87 8cn 8
88 87 mulid2i 1 8 = 8
89 88 oveq1i 1 8 + 9 = 8 + 9
90 9p8e17 9 + 8 = 17
91 73 87 90 addcomli 8 + 9 = 17
92 89 91 eqtri 1 8 + 9 = 17
93 26 4 30 37 80 67 3 27 3 86 92 decma2c 1 68 + 49 = 117
94 3 38 36 79 93 gcdi 117 gcd 68 = 1
95 eqid 117 = 117
96 6p1e7 6 + 1 = 7
97 27 dec0h 7 = 07
98 96 97 eqtri 6 + 1 = 07
99 1t1e1 1 1 = 1
100 00id 0 + 0 = 0
101 99 100 oveq12i 1 1 + 0 + 0 = 1 + 0
102 ax-1cn 1
103 102 addid1i 1 + 0 = 1
104 101 103 eqtri 1 1 + 0 + 0 = 1
105 99 oveq1i 1 1 + 7 = 1 + 7
106 7cn 7
107 7p1e8 7 + 1 = 8
108 106 102 107 addcomli 1 + 7 = 8
109 4 dec0h 8 = 08
110 105 108 109 3eqtri 1 1 + 7 = 08
111 3 3 16 27 49 98 3 4 16 104 110 decma2c 1 11 + 6 + 1 = 18
112 106 mulid2i 1 7 = 7
113 112 oveq1i 1 7 + 8 = 7 + 8
114 8p7e15 8 + 7 = 15
115 87 106 114 addcomli 7 + 8 = 15
116 113 115 eqtri 1 7 + 8 = 15
117 34 27 26 4 95 80 3 14 3 111 116 decma2c 1 117 + 68 = 185
118 3 36 35 94 117 gcdi 185 gcd 117 = 1
119 eqid 185 = 185
120 eqid 18 = 18
121 3 3 22 49 decsuc 11 + 1 = 12
122 2t1e2 2 1 = 2
123 122 22 oveq12i 2 1 + 1 + 1 = 2 + 2
124 123 53 eqtri 2 1 + 1 + 1 = 4
125 8t2e16 8 2 = 16
126 87 50 125 mulcomli 2 8 = 16
127 6p2e8 6 + 2 = 8
128 3 26 13 126 127 decaddi 2 8 + 2 = 18
129 3 4 3 13 120 121 13 4 3 124 128 decma2c 2 18 + 11 + 1 = 48
130 5cn 5
131 5t2e10 5 2 = 10
132 130 50 131 mulcomli 2 5 = 10
133 106 addid2i 0 + 7 = 7
134 3 16 27 132 133 decaddi 2 5 + 7 = 17
135 5 14 34 27 119 95 13 27 3 129 134 decma2c 2 185 + 117 = 487
136 13 35 33 118 135 gcdi 487 gcd 185 = 1
137 eqid 487 = 487
138 eqid 48 = 48
139 3 4 55 120 decsuc 18 + 1 = 19
140 30 4 3 37 138 139 3 27 3 72 92 decma2c 1 48 + 18 + 1 = 67
141 112 oveq1i 1 7 + 5 = 7 + 5
142 7p5e12 7 + 5 = 12
143 141 142 eqtri 1 7 + 5 = 12
144 31 27 5 14 137 119 3 13 3 140 143 decma2c 1 487 + 185 = 672
145 3 33 32 136 144 gcdi 672 gcd 487 = 1
146 eqid 672 = 672
147 eqid 67 = 67
148 30 4 55 138 decsuc 48 + 1 = 49
149 71 oveq2i 2 6 + 4 + 2 = 2 6 + 6
150 6t2e12 6 2 = 12
151 81 50 150 mulcomli 2 6 = 12
152 81 50 127 addcomli 2 + 6 = 8
153 3 13 26 151 152 decaddi 2 6 + 6 = 18
154 149 153 eqtri 2 6 + 4 + 2 = 18
155 7t2e14 7 2 = 14
156 106 50 155 mulcomli 2 7 = 14
157 9p4e13 9 + 4 = 13
158 73 68 157 addcomli 4 + 9 = 13
159 3 30 37 156 22 10 158 decaddci 2 7 + 9 = 23
160 26 27 30 37 147 148 13 10 13 154 159 decma2c 2 67 + 48 + 1 = 183
161 2t2e4 2 2 = 4
162 161 oveq1i 2 2 + 7 = 4 + 7
163 7p4e11 7 + 4 = 11
164 106 68 163 addcomli 4 + 7 = 11
165 162 164 eqtri 2 2 + 7 = 11
166 28 13 31 27 146 137 13 3 3 160 165 decma2c 2 672 + 487 = 1831
167 13 32 29 145 166 gcdi 1831 gcd 672 = 1
168 eqid 183 = 183
169 28 nn0cni 67
170 169 addid1i 67 + 0 = 67
171 102 addid2i 0 + 1 = 1
172 99 171 oveq12i 1 1 + 0 + 1 = 1 + 1
173 172 22 eqtri 1 1 + 0 + 1 = 2
174 88 oveq1i 1 8 + 7 = 8 + 7
175 174 114 eqtri 1 8 + 7 = 15
176 3 4 16 27 120 98 3 14 3 173 175 decma2c 1 18 + 6 + 1 = 25
177 3cn 3
178 177 mulid2i 1 3 = 3
179 178 oveq1i 1 3 + 7 = 3 + 7
180 7p3e10 7 + 3 = 10
181 106 177 180 addcomli 3 + 7 = 10
182 179 181 eqtri 1 3 + 7 = 10
183 5 10 26 27 168 170 3 16 3 176 182 decma2c 1 183 + 67 + 0 = 250
184 99 oveq1i 1 1 + 2 = 1 + 2
185 1p2e3 1 + 2 = 3
186 10 dec0h 3 = 03
187 184 185 186 3eqtri 1 1 + 2 = 03
188 11 3 28 13 23 146 3 10 16 183 187 decma2c 1 1831 + 672 = 2503
189 188 1 eqtr4i 1 1831 + 672 = N
190 3 29 12 167 189 gcdi N gcd 1831 = 1
191 9 12 20 25 190 gcdmodi 2 18 1 gcd N = 1