Metamath Proof Explorer


Theorem 2addsub

Description: Law for subtraction and addition. (Contributed by NM, 20-Nov-2005)

Ref Expression
Assertion 2addsub A B C D A + B + C - D = A + C - D + B

Proof

Step Hyp Ref Expression
1 add32 A B C A + B + C = A + C + B
2 1 3expa A B C A + B + C = A + C + B
3 2 adantrr A B C D A + B + C = A + C + B
4 3 oveq1d A B C D A + B + C - D = A + C + B - D
5 addcl A C A + C
6 addsub A + C B D A + C + B - D = A + C - D + B
7 6 3expb A + C B D A + C + B - D = A + C - D + B
8 5 7 sylan A C B D A + C + B - D = A + C - D + B
9 8 an4s A B C D A + C + B - D = A + C - D + B
10 4 9 eqtrd A B C D A + B + C - D = A + C - D + B