Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
2addsub
Next ⟩
addsubeq4
Metamath Proof Explorer
Ascii
Unicode
Theorem
2addsub
Description:
Law for subtraction and addition.
(Contributed by
NM
, 20-Nov-2005)
Ref
Expression
Assertion
2addsub
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
B
+
C
-
D
=
A
+
C
-
D
+
B
Proof
Step
Hyp
Ref
Expression
1
add32
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
+
B
+
C
=
A
+
C
+
B
2
1
3expa
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
+
B
+
C
=
A
+
C
+
B
3
2
adantrr
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
B
+
C
=
A
+
C
+
B
4
3
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
B
+
C
-
D
=
A
+
C
+
B
-
D
5
addcl
⊢
A
∈
ℂ
∧
C
∈
ℂ
→
A
+
C
∈
ℂ
6
addsub
⊢
A
+
C
∈
ℂ
∧
B
∈
ℂ
∧
D
∈
ℂ
→
A
+
C
+
B
-
D
=
A
+
C
-
D
+
B
7
6
3expb
⊢
A
+
C
∈
ℂ
∧
B
∈
ℂ
∧
D
∈
ℂ
→
A
+
C
+
B
-
D
=
A
+
C
-
D
+
B
8
5
7
sylan
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
B
∈
ℂ
∧
D
∈
ℂ
→
A
+
C
+
B
-
D
=
A
+
C
-
D
+
B
9
8
an4s
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
C
+
B
-
D
=
A
+
C
-
D
+
B
10
4
9
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
B
+
C
-
D
=
A
+
C
-
D
+
B