Metamath Proof Explorer


Theorem 2addsubd

Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
subaddd.3 φ C
addsub4d.4 φ D
Assertion 2addsubd φ A + B + C - D = A + C - D + B

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 subaddd.3 φ C
4 addsub4d.4 φ D
5 2addsub A B C D A + B + C - D = A + C - D + B
6 1 2 3 4 5 syl22anc φ A + B + C - D = A + C - D + B