Metamath Proof Explorer


Theorem 2albidv

Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997)

Ref Expression
Hypothesis 2albidv.1 φ ψ χ
Assertion 2albidv φ x y ψ x y χ

Proof

Step Hyp Ref Expression
1 2albidv.1 φ ψ χ
2 1 albidv φ y ψ y χ
3 2 albidv φ x y ψ x y χ