Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
Axiom scheme ax-4 (Quantified Implication)
2albiim
Next ⟩
exintrbi
Metamath Proof Explorer
Ascii
Unicode
Theorem
2albiim
Description:
Split a biconditional and distribute two quantifiers.
(Contributed by
NM
, 3-Feb-2005)
Ref
Expression
Assertion
2albiim
⊢
∀
x
∀
y
φ
↔
ψ
↔
∀
x
∀
y
φ
→
ψ
∧
∀
x
∀
y
ψ
→
φ
Proof
Step
Hyp
Ref
Expression
1
albiim
⊢
∀
y
φ
↔
ψ
↔
∀
y
φ
→
ψ
∧
∀
y
ψ
→
φ
2
1
albii
⊢
∀
x
∀
y
φ
↔
ψ
↔
∀
x
∀
y
φ
→
ψ
∧
∀
y
ψ
→
φ
3
19.26
⊢
∀
x
∀
y
φ
→
ψ
∧
∀
y
ψ
→
φ
↔
∀
x
∀
y
φ
→
ψ
∧
∀
x
∀
y
ψ
→
φ
4
2
3
bitri
⊢
∀
x
∀
y
φ
↔
ψ
↔
∀
x
∀
y
φ
→
ψ
∧
∀
x
∀
y
ψ
→
φ