Metamath Proof Explorer


Theorem 2at0mat0

Description: Special case of 2atmat0 where one atom could be zero. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses 2atmatz.j ˙ = join K
2atmatz.m ˙ = meet K
2atmatz.z 0 ˙ = 0. K
2atmatz.a A = Atoms K
Assertion 2at0mat0 K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙

Proof

Step Hyp Ref Expression
1 2atmatz.j ˙ = join K
2 2atmatz.m ˙ = meet K
3 2atmatz.z 0 ˙ = 0. K
4 2atmatz.a A = Atoms K
5 simpll K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S S A K HL P A Q A
6 simplr1 K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S S A R A
7 simpr K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S S A S A
8 simplr3 K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S S A P ˙ Q R ˙ S
9 simpl1 K HL P A Q A R A S A P ˙ Q R ˙ S K HL
10 hlol K HL K OL
11 9 10 syl K HL P A Q A R A S A P ˙ Q R ˙ S K OL
12 simpr1 K HL P A Q A R A S A P ˙ Q R ˙ S R A
13 simpr2 K HL P A Q A R A S A P ˙ Q R ˙ S S A
14 eqid Base K = Base K
15 14 1 4 hlatjcl K HL R A S A R ˙ S Base K
16 9 12 13 15 syl3anc K HL P A Q A R A S A P ˙ Q R ˙ S R ˙ S Base K
17 simpl3 K HL P A Q A R A S A P ˙ Q R ˙ S Q A
18 14 2 3 4 meetat2 K OL R ˙ S Base K Q A R ˙ S ˙ Q A R ˙ S ˙ Q = 0 ˙
19 11 16 17 18 syl3anc K HL P A Q A R A S A P ˙ Q R ˙ S R ˙ S ˙ Q A R ˙ S ˙ Q = 0 ˙
20 19 adantr K HL P A Q A R A S A P ˙ Q R ˙ S P = Q R ˙ S ˙ Q A R ˙ S ˙ Q = 0 ˙
21 oveq1 P = Q P ˙ Q = Q ˙ Q
22 1 4 hlatjidm K HL Q A Q ˙ Q = Q
23 9 17 22 syl2anc K HL P A Q A R A S A P ˙ Q R ˙ S Q ˙ Q = Q
24 21 23 sylan9eqr K HL P A Q A R A S A P ˙ Q R ˙ S P = Q P ˙ Q = Q
25 24 oveq1d K HL P A Q A R A S A P ˙ Q R ˙ S P = Q P ˙ Q ˙ R ˙ S = Q ˙ R ˙ S
26 9 hllatd K HL P A Q A R A S A P ˙ Q R ˙ S K Lat
27 14 4 atbase Q A Q Base K
28 17 27 syl K HL P A Q A R A S A P ˙ Q R ˙ S Q Base K
29 14 2 latmcom K Lat Q Base K R ˙ S Base K Q ˙ R ˙ S = R ˙ S ˙ Q
30 26 28 16 29 syl3anc K HL P A Q A R A S A P ˙ Q R ˙ S Q ˙ R ˙ S = R ˙ S ˙ Q
31 30 adantr K HL P A Q A R A S A P ˙ Q R ˙ S P = Q Q ˙ R ˙ S = R ˙ S ˙ Q
32 25 31 eqtrd K HL P A Q A R A S A P ˙ Q R ˙ S P = Q P ˙ Q ˙ R ˙ S = R ˙ S ˙ Q
33 32 eleq1d K HL P A Q A R A S A P ˙ Q R ˙ S P = Q P ˙ Q ˙ R ˙ S A R ˙ S ˙ Q A
34 32 eqeq1d K HL P A Q A R A S A P ˙ Q R ˙ S P = Q P ˙ Q ˙ R ˙ S = 0 ˙ R ˙ S ˙ Q = 0 ˙
35 33 34 orbi12d K HL P A Q A R A S A P ˙ Q R ˙ S P = Q P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙ R ˙ S ˙ Q A R ˙ S ˙ Q = 0 ˙
36 20 35 mpbird K HL P A Q A R A S A P ˙ Q R ˙ S P = Q P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙
37 14 1 4 hlatjcl K HL P A Q A P ˙ Q Base K
38 37 adantr K HL P A Q A R A S A P ˙ Q R ˙ S P ˙ Q Base K
39 14 2 3 4 meetat2 K OL P ˙ Q Base K S A P ˙ Q ˙ S A P ˙ Q ˙ S = 0 ˙
40 11 38 13 39 syl3anc K HL P A Q A R A S A P ˙ Q R ˙ S P ˙ Q ˙ S A P ˙ Q ˙ S = 0 ˙
41 40 adantr K HL P A Q A R A S A P ˙ Q R ˙ S R = S P ˙ Q ˙ S A P ˙ Q ˙ S = 0 ˙
42 oveq1 R = S R ˙ S = S ˙ S
43 1 4 hlatjidm K HL S A S ˙ S = S
44 9 13 43 syl2anc K HL P A Q A R A S A P ˙ Q R ˙ S S ˙ S = S
45 42 44 sylan9eqr K HL P A Q A R A S A P ˙ Q R ˙ S R = S R ˙ S = S
46 45 oveq2d K HL P A Q A R A S A P ˙ Q R ˙ S R = S P ˙ Q ˙ R ˙ S = P ˙ Q ˙ S
47 46 eleq1d K HL P A Q A R A S A P ˙ Q R ˙ S R = S P ˙ Q ˙ R ˙ S A P ˙ Q ˙ S A
48 46 eqeq1d K HL P A Q A R A S A P ˙ Q R ˙ S R = S P ˙ Q ˙ R ˙ S = 0 ˙ P ˙ Q ˙ S = 0 ˙
49 47 48 orbi12d K HL P A Q A R A S A P ˙ Q R ˙ S R = S P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙ P ˙ Q ˙ S A P ˙ Q ˙ S = 0 ˙
50 41 49 mpbird K HL P A Q A R A S A P ˙ Q R ˙ S R = S P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙
51 50 adantlr K HL P A Q A R A S A P ˙ Q R ˙ S P Q R = S P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙
52 df-ne P ˙ Q ˙ R ˙ S 0 ˙ ¬ P ˙ Q ˙ R ˙ S = 0 ˙
53 simpll1 K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S 0 ˙ K HL
54 simpll2 K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S 0 ˙ P A
55 simpll3 K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S 0 ˙ Q A
56 simpr1 K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S 0 ˙ P Q
57 eqid LLines K = LLines K
58 1 4 57 llni2 K HL P A Q A P Q P ˙ Q LLines K
59 53 54 55 56 58 syl31anc K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S 0 ˙ P ˙ Q LLines K
60 simplr1 K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S 0 ˙ R A
61 simplr2 K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S 0 ˙ S A
62 simpr2 K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S 0 ˙ R S
63 1 4 57 llni2 K HL R A S A R S R ˙ S LLines K
64 53 60 61 62 63 syl31anc K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S 0 ˙ R ˙ S LLines K
65 simplr3 K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S 0 ˙ P ˙ Q R ˙ S
66 simpr3 K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S 0 ˙ P ˙ Q ˙ R ˙ S 0 ˙
67 2 3 4 57 2llnmat K HL P ˙ Q LLines K R ˙ S LLines K P ˙ Q R ˙ S P ˙ Q ˙ R ˙ S 0 ˙ P ˙ Q ˙ R ˙ S A
68 53 59 64 65 66 67 syl32anc K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S 0 ˙ P ˙ Q ˙ R ˙ S A
69 68 3exp2 K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S 0 ˙ P ˙ Q ˙ R ˙ S A
70 69 imp31 K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S 0 ˙ P ˙ Q ˙ R ˙ S A
71 52 70 syl5bir K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S ¬ P ˙ Q ˙ R ˙ S = 0 ˙ P ˙ Q ˙ R ˙ S A
72 71 orrd K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S = 0 ˙ P ˙ Q ˙ R ˙ S A
73 72 orcomd K HL P A Q A R A S A P ˙ Q R ˙ S P Q R S P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙
74 51 73 pm2.61dane K HL P A Q A R A S A P ˙ Q R ˙ S P Q P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙
75 36 74 pm2.61dane K HL P A Q A R A S A P ˙ Q R ˙ S P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙
76 5 6 7 8 75 syl13anc K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S S A P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙
77 simpl1 K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S K HL
78 77 10 syl K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S K OL
79 37 adantr K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S P ˙ Q Base K
80 simpr1 K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S R A
81 14 2 3 4 meetat2 K OL P ˙ Q Base K R A P ˙ Q ˙ R A P ˙ Q ˙ R = 0 ˙
82 78 79 80 81 syl3anc K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S P ˙ Q ˙ R A P ˙ Q ˙ R = 0 ˙
83 82 adantr K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S S = 0 ˙ P ˙ Q ˙ R A P ˙ Q ˙ R = 0 ˙
84 oveq2 S = 0 ˙ R ˙ S = R ˙ 0 ˙
85 14 4 atbase R A R Base K
86 80 85 syl K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S R Base K
87 14 1 3 olj01 K OL R Base K R ˙ 0 ˙ = R
88 78 86 87 syl2anc K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S R ˙ 0 ˙ = R
89 84 88 sylan9eqr K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S S = 0 ˙ R ˙ S = R
90 89 oveq2d K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S S = 0 ˙ P ˙ Q ˙ R ˙ S = P ˙ Q ˙ R
91 90 eleq1d K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S S = 0 ˙ P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R A
92 90 eqeq1d K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S S = 0 ˙ P ˙ Q ˙ R ˙ S = 0 ˙ P ˙ Q ˙ R = 0 ˙
93 91 92 orbi12d K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S S = 0 ˙ P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙ P ˙ Q ˙ R A P ˙ Q ˙ R = 0 ˙
94 83 93 mpbird K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S S = 0 ˙ P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙
95 simpr2 K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S S A S = 0 ˙
96 76 94 95 mpjaodan K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙