Metamath Proof Explorer


Theorem 2atjm

Description: The meet of a line (expressed with 2 atoms) and a lattice element. (Contributed by NM, 30-Jul-2012)

Ref Expression
Hypotheses 2atjm.b B = Base K
2atjm.l ˙ = K
2atjm.j ˙ = join K
2atjm.m ˙ = meet K
2atjm.a A = Atoms K
Assertion 2atjm K HL P A Q A X B P ˙ X ¬ Q ˙ X P ˙ Q ˙ X = P

Proof

Step Hyp Ref Expression
1 2atjm.b B = Base K
2 2atjm.l ˙ = K
3 2atjm.j ˙ = join K
4 2atjm.m ˙ = meet K
5 2atjm.a A = Atoms K
6 hllat K HL K Lat
7 6 3ad2ant1 K HL P A Q A X B P ˙ X ¬ Q ˙ X K Lat
8 simp21 K HL P A Q A X B P ˙ X ¬ Q ˙ X P A
9 1 5 atbase P A P B
10 8 9 syl K HL P A Q A X B P ˙ X ¬ Q ˙ X P B
11 simp22 K HL P A Q A X B P ˙ X ¬ Q ˙ X Q A
12 1 5 atbase Q A Q B
13 11 12 syl K HL P A Q A X B P ˙ X ¬ Q ˙ X Q B
14 1 2 3 latlej1 K Lat P B Q B P ˙ P ˙ Q
15 7 10 13 14 syl3anc K HL P A Q A X B P ˙ X ¬ Q ˙ X P ˙ P ˙ Q
16 simp3l K HL P A Q A X B P ˙ X ¬ Q ˙ X P ˙ X
17 simp1 K HL P A Q A X B P ˙ X ¬ Q ˙ X K HL
18 1 3 5 hlatjcl K HL P A Q A P ˙ Q B
19 17 8 11 18 syl3anc K HL P A Q A X B P ˙ X ¬ Q ˙ X P ˙ Q B
20 simp23 K HL P A Q A X B P ˙ X ¬ Q ˙ X X B
21 1 2 4 latlem12 K Lat P B P ˙ Q B X B P ˙ P ˙ Q P ˙ X P ˙ P ˙ Q ˙ X
22 7 10 19 20 21 syl13anc K HL P A Q A X B P ˙ X ¬ Q ˙ X P ˙ P ˙ Q P ˙ X P ˙ P ˙ Q ˙ X
23 15 16 22 mpbi2and K HL P A Q A X B P ˙ X ¬ Q ˙ X P ˙ P ˙ Q ˙ X
24 hlatl K HL K AtLat
25 24 3ad2ant1 K HL P A Q A X B P ˙ X ¬ Q ˙ X K AtLat
26 1 4 latmcom K Lat P ˙ Q B X B P ˙ Q ˙ X = X ˙ P ˙ Q
27 7 19 20 26 syl3anc K HL P A Q A X B P ˙ X ¬ Q ˙ X P ˙ Q ˙ X = X ˙ P ˙ Q
28 20 8 11 3jca K HL P A Q A X B P ˙ X ¬ Q ˙ X X B P A Q A
29 nbrne2 P ˙ X ¬ Q ˙ X P Q
30 29 3ad2ant3 K HL P A Q A X B P ˙ X ¬ Q ˙ X P Q
31 simp3r K HL P A Q A X B P ˙ X ¬ Q ˙ X ¬ Q ˙ X
32 1 3 latjcl K Lat X B Q B X ˙ Q B
33 7 20 13 32 syl3anc K HL P A Q A X B P ˙ X ¬ Q ˙ X X ˙ Q B
34 1 2 3 latlej1 K Lat X B Q B X ˙ X ˙ Q
35 7 20 13 34 syl3anc K HL P A Q A X B P ˙ X ¬ Q ˙ X X ˙ X ˙ Q
36 1 2 7 10 20 33 16 35 lattrd K HL P A Q A X B P ˙ X ¬ Q ˙ X P ˙ X ˙ Q
37 1 2 3 4 5 cvrat3 K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q X ˙ P ˙ Q A
38 37 imp K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q X ˙ P ˙ Q A
39 17 28 30 31 36 38 syl23anc K HL P A Q A X B P ˙ X ¬ Q ˙ X X ˙ P ˙ Q A
40 27 39 eqeltrd K HL P A Q A X B P ˙ X ¬ Q ˙ X P ˙ Q ˙ X A
41 2 5 atcmp K AtLat P A P ˙ Q ˙ X A P ˙ P ˙ Q ˙ X P = P ˙ Q ˙ X
42 25 8 40 41 syl3anc K HL P A Q A X B P ˙ X ¬ Q ˙ X P ˙ P ˙ Q ˙ X P = P ˙ Q ˙ X
43 23 42 mpbid K HL P A Q A X B P ˙ X ¬ Q ˙ X P = P ˙ Q ˙ X
44 43 eqcomd K HL P A Q A X B P ˙ X ¬ Q ˙ X P ˙ Q ˙ X = P