Step |
Hyp |
Ref |
Expression |
1 |
|
2atm.l |
|
2 |
|
2atm.j |
|
3 |
|
2atm.m |
|
4 |
|
2atm.a |
|
5 |
|
simp31 |
|
6 |
|
simp32 |
|
7 |
|
simp11 |
|
8 |
7
|
hllatd |
|
9 |
|
simp23 |
|
10 |
|
eqid |
|
11 |
10 4
|
atbase |
|
12 |
9 11
|
syl |
|
13 |
|
simp12 |
|
14 |
10 4
|
atbase |
|
15 |
13 14
|
syl |
|
16 |
|
simp13 |
|
17 |
10 4
|
atbase |
|
18 |
16 17
|
syl |
|
19 |
10 2
|
latjcl |
|
20 |
8 15 18 19
|
syl3anc |
|
21 |
|
simp21 |
|
22 |
|
simp22 |
|
23 |
10 2 4
|
hlatjcl |
|
24 |
7 21 22 23
|
syl3anc |
|
25 |
10 1 3
|
latlem12 |
|
26 |
8 12 20 24 25
|
syl13anc |
|
27 |
5 6 26
|
mpbi2and |
|
28 |
|
hlatl |
|
29 |
7 28
|
syl |
|
30 |
10 3
|
latmcl |
|
31 |
8 20 24 30
|
syl3anc |
|
32 |
|
eqid |
|
33 |
10 1 32 4
|
atlen0 |
|
34 |
29 31 9 27 33
|
syl31anc |
|
35 |
34
|
neneqd |
|
36 |
|
simp33 |
|
37 |
2 3 32 4
|
2atmat0 |
|
38 |
7 13 16 21 22 36 37
|
syl33anc |
|
39 |
38
|
ord |
|
40 |
35 39
|
mt3d |
|
41 |
1 4
|
atcmp |
|
42 |
29 9 40 41
|
syl3anc |
|
43 |
27 42
|
mpbid |
|