Metamath Proof Explorer


Theorem 2atm

Description: An atom majorized by two different atom joins (which could be atoms or lines) is equal to their intersection. (Contributed by NM, 30-Jun-2013)

Ref Expression
Hypotheses 2atm.l ˙ = K
2atm.j ˙ = join K
2atm.m ˙ = meet K
2atm.a A = Atoms K
Assertion 2atm K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S T = P ˙ Q ˙ R ˙ S

Proof

Step Hyp Ref Expression
1 2atm.l ˙ = K
2 2atm.j ˙ = join K
3 2atm.m ˙ = meet K
4 2atm.a A = Atoms K
5 simp31 K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S T ˙ P ˙ Q
6 simp32 K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S T ˙ R ˙ S
7 simp11 K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S K HL
8 7 hllatd K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S K Lat
9 simp23 K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S T A
10 eqid Base K = Base K
11 10 4 atbase T A T Base K
12 9 11 syl K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S T Base K
13 simp12 K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S P A
14 10 4 atbase P A P Base K
15 13 14 syl K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S P Base K
16 simp13 K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S Q A
17 10 4 atbase Q A Q Base K
18 16 17 syl K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S Q Base K
19 10 2 latjcl K Lat P Base K Q Base K P ˙ Q Base K
20 8 15 18 19 syl3anc K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S P ˙ Q Base K
21 simp21 K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S R A
22 simp22 K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S S A
23 10 2 4 hlatjcl K HL R A S A R ˙ S Base K
24 7 21 22 23 syl3anc K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S R ˙ S Base K
25 10 1 3 latlem12 K Lat T Base K P ˙ Q Base K R ˙ S Base K T ˙ P ˙ Q T ˙ R ˙ S T ˙ P ˙ Q ˙ R ˙ S
26 8 12 20 24 25 syl13anc K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S T ˙ P ˙ Q T ˙ R ˙ S T ˙ P ˙ Q ˙ R ˙ S
27 5 6 26 mpbi2and K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S T ˙ P ˙ Q ˙ R ˙ S
28 hlatl K HL K AtLat
29 7 28 syl K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S K AtLat
30 10 3 latmcl K Lat P ˙ Q Base K R ˙ S Base K P ˙ Q ˙ R ˙ S Base K
31 8 20 24 30 syl3anc K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S P ˙ Q ˙ R ˙ S Base K
32 eqid 0. K = 0. K
33 10 1 32 4 atlen0 K AtLat P ˙ Q ˙ R ˙ S Base K T A T ˙ P ˙ Q ˙ R ˙ S P ˙ Q ˙ R ˙ S 0. K
34 29 31 9 27 33 syl31anc K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S P ˙ Q ˙ R ˙ S 0. K
35 34 neneqd K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S ¬ P ˙ Q ˙ R ˙ S = 0. K
36 simp33 K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S P ˙ Q R ˙ S
37 2 3 32 4 2atmat0 K HL P A Q A R A S A P ˙ Q R ˙ S P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0. K
38 7 13 16 21 22 36 37 syl33anc K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0. K
39 38 ord K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S ¬ P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0. K
40 35 39 mt3d K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S P ˙ Q ˙ R ˙ S A
41 1 4 atcmp K AtLat T A P ˙ Q ˙ R ˙ S A T ˙ P ˙ Q ˙ R ˙ S T = P ˙ Q ˙ R ˙ S
42 29 9 40 41 syl3anc K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S T ˙ P ˙ Q ˙ R ˙ S T = P ˙ Q ˙ R ˙ S
43 27 42 mpbid K HL P A Q A R A S A T A T ˙ P ˙ Q T ˙ R ˙ S P ˙ Q R ˙ S T = P ˙ Q ˙ R ˙ S