Metamath Proof Explorer


Theorem 2atm

Description: An atom majorized by two different atom joins (which could be atoms or lines) is equal to their intersection. (Contributed by NM, 30-Jun-2013)

Ref Expression
Hypotheses 2atm.l ˙=K
2atm.j ˙=joinK
2atm.m ˙=meetK
2atm.a A=AtomsK
Assertion 2atm KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙ST=P˙Q˙R˙S

Proof

Step Hyp Ref Expression
1 2atm.l ˙=K
2 2atm.j ˙=joinK
3 2atm.m ˙=meetK
4 2atm.a A=AtomsK
5 simp31 KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙ST˙P˙Q
6 simp32 KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙ST˙R˙S
7 simp11 KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SKHL
8 7 hllatd KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SKLat
9 simp23 KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙STA
10 eqid BaseK=BaseK
11 10 4 atbase TATBaseK
12 9 11 syl KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙STBaseK
13 simp12 KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SPA
14 10 4 atbase PAPBaseK
15 13 14 syl KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SPBaseK
16 simp13 KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SQA
17 10 4 atbase QAQBaseK
18 16 17 syl KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SQBaseK
19 10 2 latjcl KLatPBaseKQBaseKP˙QBaseK
20 8 15 18 19 syl3anc KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SP˙QBaseK
21 simp21 KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SRA
22 simp22 KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SSA
23 10 2 4 hlatjcl KHLRASAR˙SBaseK
24 7 21 22 23 syl3anc KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SR˙SBaseK
25 10 1 3 latlem12 KLatTBaseKP˙QBaseKR˙SBaseKT˙P˙QT˙R˙ST˙P˙Q˙R˙S
26 8 12 20 24 25 syl13anc KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙ST˙P˙QT˙R˙ST˙P˙Q˙R˙S
27 5 6 26 mpbi2and KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙ST˙P˙Q˙R˙S
28 hlatl KHLKAtLat
29 7 28 syl KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SKAtLat
30 10 3 latmcl KLatP˙QBaseKR˙SBaseKP˙Q˙R˙SBaseK
31 8 20 24 30 syl3anc KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SP˙Q˙R˙SBaseK
32 eqid 0.K=0.K
33 10 1 32 4 atlen0 KAtLatP˙Q˙R˙SBaseKTAT˙P˙Q˙R˙SP˙Q˙R˙S0.K
34 29 31 9 27 33 syl31anc KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SP˙Q˙R˙S0.K
35 34 neneqd KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙S¬P˙Q˙R˙S=0.K
36 simp33 KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SP˙QR˙S
37 2 3 32 4 2atmat0 KHLPAQARASAP˙QR˙SP˙Q˙R˙SAP˙Q˙R˙S=0.K
38 7 13 16 21 22 36 37 syl33anc KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SP˙Q˙R˙SAP˙Q˙R˙S=0.K
39 38 ord KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙S¬P˙Q˙R˙SAP˙Q˙R˙S=0.K
40 35 39 mt3d KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙SP˙Q˙R˙SA
41 1 4 atcmp KAtLatTAP˙Q˙R˙SAT˙P˙Q˙R˙ST=P˙Q˙R˙S
42 29 9 40 41 syl3anc KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙ST˙P˙Q˙R˙ST=P˙Q˙R˙S
43 27 42 mpbid KHLPAQARASATAT˙P˙QT˙R˙SP˙QR˙ST=P˙Q˙R˙S