Step |
Hyp |
Ref |
Expression |
1 |
|
2atm2at.j |
|
2 |
|
2atm2at.m |
|
3 |
|
2atm2at.z |
|
4 |
|
2atm2at.a |
|
5 |
|
hlop |
|
6 |
5
|
adantr |
|
7 |
|
simpr3 |
|
8 |
|
eqid |
|
9 |
3 8 4
|
0ltat |
|
10 |
6 7 9
|
syl2anc |
|
11 |
|
simpl |
|
12 |
|
simpr1 |
|
13 |
|
eqid |
|
14 |
13 1 4
|
hlatlej1 |
|
15 |
11 7 12 14
|
syl3anc |
|
16 |
|
simpr2 |
|
17 |
13 1 4
|
hlatlej1 |
|
18 |
11 7 16 17
|
syl3anc |
|
19 |
|
hllat |
|
20 |
19
|
adantr |
|
21 |
|
eqid |
|
22 |
21 4
|
atbase |
|
23 |
7 22
|
syl |
|
24 |
21 1 4
|
hlatjcl |
|
25 |
11 7 12 24
|
syl3anc |
|
26 |
21 1 4
|
hlatjcl |
|
27 |
11 7 16 26
|
syl3anc |
|
28 |
21 13 2
|
latlem12 |
|
29 |
20 23 25 27 28
|
syl13anc |
|
30 |
15 18 29
|
mpbi2and |
|
31 |
|
hlpos |
|
32 |
31
|
adantr |
|
33 |
21 3
|
op0cl |
|
34 |
6 33
|
syl |
|
35 |
21 2
|
latmcl |
|
36 |
20 25 27 35
|
syl3anc |
|
37 |
21 13 8
|
pltletr |
|
38 |
32 34 23 36 37
|
syl13anc |
|
39 |
10 30 38
|
mp2and |
|
40 |
21 8 3
|
opltn0 |
|
41 |
6 36 40
|
syl2anc |
|
42 |
39 41
|
mpbid |
|