Metamath Proof Explorer


Theorem 2atm2atN

Description: Two joins with a common atom have a nonzero meet. (Contributed by NM, 4-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2atm2at.j ˙ = join K
2atm2at.m ˙ = meet K
2atm2at.z 0 ˙ = 0. K
2atm2at.a A = Atoms K
Assertion 2atm2atN K HL P A Q A R A R ˙ P ˙ R ˙ Q 0 ˙

Proof

Step Hyp Ref Expression
1 2atm2at.j ˙ = join K
2 2atm2at.m ˙ = meet K
3 2atm2at.z 0 ˙ = 0. K
4 2atm2at.a A = Atoms K
5 hlop K HL K OP
6 5 adantr K HL P A Q A R A K OP
7 simpr3 K HL P A Q A R A R A
8 eqid < K = < K
9 3 8 4 0ltat K OP R A 0 ˙ < K R
10 6 7 9 syl2anc K HL P A Q A R A 0 ˙ < K R
11 simpl K HL P A Q A R A K HL
12 simpr1 K HL P A Q A R A P A
13 eqid K = K
14 13 1 4 hlatlej1 K HL R A P A R K R ˙ P
15 11 7 12 14 syl3anc K HL P A Q A R A R K R ˙ P
16 simpr2 K HL P A Q A R A Q A
17 13 1 4 hlatlej1 K HL R A Q A R K R ˙ Q
18 11 7 16 17 syl3anc K HL P A Q A R A R K R ˙ Q
19 hllat K HL K Lat
20 19 adantr K HL P A Q A R A K Lat
21 eqid Base K = Base K
22 21 4 atbase R A R Base K
23 7 22 syl K HL P A Q A R A R Base K
24 21 1 4 hlatjcl K HL R A P A R ˙ P Base K
25 11 7 12 24 syl3anc K HL P A Q A R A R ˙ P Base K
26 21 1 4 hlatjcl K HL R A Q A R ˙ Q Base K
27 11 7 16 26 syl3anc K HL P A Q A R A R ˙ Q Base K
28 21 13 2 latlem12 K Lat R Base K R ˙ P Base K R ˙ Q Base K R K R ˙ P R K R ˙ Q R K R ˙ P ˙ R ˙ Q
29 20 23 25 27 28 syl13anc K HL P A Q A R A R K R ˙ P R K R ˙ Q R K R ˙ P ˙ R ˙ Q
30 15 18 29 mpbi2and K HL P A Q A R A R K R ˙ P ˙ R ˙ Q
31 hlpos K HL K Poset
32 31 adantr K HL P A Q A R A K Poset
33 21 3 op0cl K OP 0 ˙ Base K
34 6 33 syl K HL P A Q A R A 0 ˙ Base K
35 21 2 latmcl K Lat R ˙ P Base K R ˙ Q Base K R ˙ P ˙ R ˙ Q Base K
36 20 25 27 35 syl3anc K HL P A Q A R A R ˙ P ˙ R ˙ Q Base K
37 21 13 8 pltletr K Poset 0 ˙ Base K R Base K R ˙ P ˙ R ˙ Q Base K 0 ˙ < K R R K R ˙ P ˙ R ˙ Q 0 ˙ < K R ˙ P ˙ R ˙ Q
38 32 34 23 36 37 syl13anc K HL P A Q A R A 0 ˙ < K R R K R ˙ P ˙ R ˙ Q 0 ˙ < K R ˙ P ˙ R ˙ Q
39 10 30 38 mp2and K HL P A Q A R A 0 ˙ < K R ˙ P ˙ R ˙ Q
40 21 8 3 opltn0 K OP R ˙ P ˙ R ˙ Q Base K 0 ˙ < K R ˙ P ˙ R ˙ Q R ˙ P ˙ R ˙ Q 0 ˙
41 6 36 40 syl2anc K HL P A Q A R A 0 ˙ < K R ˙ P ˙ R ˙ Q R ˙ P ˙ R ˙ Q 0 ˙
42 39 41 mpbid K HL P A Q A R A R ˙ P ˙ R ˙ Q 0 ˙