Metamath Proof Explorer


Theorem 2atmat0

Description: The meet of two unequal lines (expressed as joins of atoms) is an atom or zero. (Contributed by NM, 2-Dec-2012)

Ref Expression
Hypotheses 2atmatz.j ˙ = join K
2atmatz.m ˙ = meet K
2atmatz.z 0 ˙ = 0. K
2atmatz.a A = Atoms K
Assertion 2atmat0 K HL P A Q A R A S A P ˙ Q R ˙ S P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙

Proof

Step Hyp Ref Expression
1 2atmatz.j ˙ = join K
2 2atmatz.m ˙ = meet K
3 2atmatz.z 0 ˙ = 0. K
4 2atmatz.a A = Atoms K
5 simpl K HL P A Q A R A S A P ˙ Q R ˙ S K HL P A Q A
6 simpr1 K HL P A Q A R A S A P ˙ Q R ˙ S R A
7 simpr2 K HL P A Q A R A S A P ˙ Q R ˙ S S A
8 7 orcd K HL P A Q A R A S A P ˙ Q R ˙ S S A S = 0 ˙
9 simpr3 K HL P A Q A R A S A P ˙ Q R ˙ S P ˙ Q R ˙ S
10 1 2 3 4 2at0mat0 K HL P A Q A R A S A S = 0 ˙ P ˙ Q R ˙ S P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙
11 5 6 8 9 10 syl13anc K HL P A Q A R A S A P ˙ Q R ˙ S P ˙ Q ˙ R ˙ S A P ˙ Q ˙ R ˙ S = 0 ˙