Metamath Proof Explorer


Theorem 2atnelvolN

Description: The join of two atoms is not a lattice volume. (Contributed by NM, 17-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 3atnelvol.j ˙ = join K
3atnelvol.a A = Atoms K
3atnelvol.v V = LVols K
Assertion 2atnelvolN K HL P A Q A ¬ P ˙ Q V

Proof

Step Hyp Ref Expression
1 3atnelvol.j ˙ = join K
2 3atnelvol.a A = Atoms K
3 3atnelvol.v V = LVols K
4 1 2 hlatjidm K HL P A P ˙ P = P
5 4 3adant3 K HL P A Q A P ˙ P = P
6 5 oveq1d K HL P A Q A P ˙ P ˙ Q = P ˙ Q
7 simp1 K HL P A Q A K HL
8 simp2 K HL P A Q A P A
9 simp3 K HL P A Q A Q A
10 1 2 3 3atnelvolN K HL P A P A Q A ¬ P ˙ P ˙ Q V
11 7 8 8 9 10 syl13anc K HL P A Q A ¬ P ˙ P ˙ Q V
12 6 11 eqneltrrd K HL P A Q A ¬ P ˙ Q V