Metamath Proof Explorer


Theorem 2clwwlk2clwwlklem

Description: Lemma for 2clwwlk2clwwlk . (Contributed by AV, 27-Apr-2022)

Ref Expression
Assertion 2clwwlk2clwwlklem N 3 W X ClWWalksNOn G N W N 2 = W 0 W substr N 2 N X ClWWalksNOn G 2

Proof

Step Hyp Ref Expression
1 isclwwlknon W X ClWWalksNOn G N W N ClWWalksN G W 0 = X
2 eqid Vtx G = Vtx G
3 2 clwwlknbp W N ClWWalksN G W Word Vtx G W = N
4 simpll W Word Vtx G W = N N 3 W Word Vtx G
5 uzuzle23 N 3 N 2
6 eluzfz2 N 2 N 2 N
7 5 6 syl N 3 N 2 N
8 7 adantl W Word Vtx G W = N N 3 N 2 N
9 oveq2 W = N 2 W = 2 N
10 9 eleq2d W = N N 2 W N 2 N
11 10 ad2antlr W Word Vtx G W = N N 3 N 2 W N 2 N
12 8 11 mpbird W Word Vtx G W = N N 3 N 2 W
13 4 12 jca W Word Vtx G W = N N 3 W Word Vtx G N 2 W
14 13 ex W Word Vtx G W = N N 3 W Word Vtx G N 2 W
15 3 14 syl W N ClWWalksN G N 3 W Word Vtx G N 2 W
16 15 adantr W N ClWWalksN G W 0 = X N 3 W Word Vtx G N 2 W
17 1 16 sylbi W X ClWWalksNOn G N N 3 W Word Vtx G N 2 W
18 17 impcom N 3 W X ClWWalksNOn G N W Word Vtx G N 2 W
19 swrds2m W Word Vtx G N 2 W W substr N 2 N = ⟨“ W N 2 W N 1 ”⟩
20 18 19 syl N 3 W X ClWWalksNOn G N W substr N 2 N = ⟨“ W N 2 W N 1 ”⟩
21 20 3adant3 N 3 W X ClWWalksNOn G N W N 2 = W 0 W substr N 2 N = ⟨“ W N 2 W N 1 ”⟩
22 simp3 N 3 W X ClWWalksNOn G N W N 2 = W 0 W N 2 = W 0
23 eqidd N 3 W X ClWWalksNOn G N W N 2 = W 0 W N 1 = W N 1
24 22 23 s2eqd N 3 W X ClWWalksNOn G N W N 2 = W 0 ⟨“ W N 2 W N 1 ”⟩ = ⟨“ W 0 W N 1 ”⟩
25 simpr W N ClWWalksN G W 0 = X W 0 = X
26 eqidd W N ClWWalksN G W 0 = X W N 1 = W N 1
27 25 26 s2eqd W N ClWWalksN G W 0 = X ⟨“ W 0 W N 1 ”⟩ = ⟨“ X W N 1 ”⟩
28 1 27 sylbi W X ClWWalksNOn G N ⟨“ W 0 W N 1 ”⟩ = ⟨“ X W N 1 ”⟩
29 28 3ad2ant2 N 3 W X ClWWalksNOn G N W N 2 = W 0 ⟨“ W 0 W N 1 ”⟩ = ⟨“ X W N 1 ”⟩
30 21 24 29 3eqtrd N 3 W X ClWWalksNOn G N W N 2 = W 0 W substr N 2 N = ⟨“ X W N 1 ”⟩
31 clwwlknonmpo ClWWalksNOn G = v Vtx G , n 0 w n ClWWalksN G | w 0 = v
32 31 elmpocl1 W X ClWWalksNOn G N X Vtx G
33 32 3ad2ant2 N 3 W X ClWWalksNOn G N W N 2 = W 0 X Vtx G
34 eluzge3nn N 3 N
35 fzo0end N N 1 0 ..^ N
36 34 35 syl N 3 N 1 0 ..^ N
37 36 adantl W Word Vtx G W = N N 3 N 1 0 ..^ N
38 oveq2 W = N 0 ..^ W = 0 ..^ N
39 38 ad2antlr W Word Vtx G W = N N 3 0 ..^ W = 0 ..^ N
40 39 eleq2d W Word Vtx G W = N N 3 N 1 0 ..^ W N 1 0 ..^ N
41 37 40 mpbird W Word Vtx G W = N N 3 N 1 0 ..^ W
42 wrdsymbcl W Word Vtx G N 1 0 ..^ W W N 1 Vtx G
43 4 41 42 syl2anc W Word Vtx G W = N N 3 W N 1 Vtx G
44 43 ex W Word Vtx G W = N N 3 W N 1 Vtx G
45 3 44 syl W N ClWWalksN G N 3 W N 1 Vtx G
46 45 adantr W N ClWWalksN G W 0 = X N 3 W N 1 Vtx G
47 1 46 sylbi W X ClWWalksNOn G N N 3 W N 1 Vtx G
48 47 impcom N 3 W X ClWWalksNOn G N W N 1 Vtx G
49 48 3adant3 N 3 W X ClWWalksNOn G N W N 2 = W 0 W N 1 Vtx G
50 preq1 W 0 = X W 0 W N 1 = X W N 1
51 50 adantl W N ClWWalksN G W 0 = X W 0 W N 1 = X W N 1
52 51 eqcomd W N ClWWalksN G W 0 = X X W N 1 = W 0 W N 1
53 52 3ad2ant2 N 3 W N ClWWalksN G W 0 = X W N 2 = W 0 X W N 1 = W 0 W N 1
54 prcom W 0 W N 1 = W N 1 W 0
55 53 54 eqtrdi N 3 W N ClWWalksN G W 0 = X W N 2 = W 0 X W N 1 = W N 1 W 0
56 eqid Edg G = Edg G
57 2 56 clwwlknp W N ClWWalksN G W Word Vtx G W = N i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G
58 57 adantr W N ClWWalksN G W 0 = X W Word Vtx G W = N i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G
59 58 3ad2ant2 N 3 W N ClWWalksN G W 0 = X W N 2 = W 0 W Word Vtx G W = N i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G
60 lsw W Word Vtx G lastS W = W W 1
61 fvoveq1 W = N W W 1 = W N 1
62 60 61 sylan9eq W Word Vtx G W = N lastS W = W N 1
63 62 adantr W Word Vtx G W = N N 3 W N ClWWalksN G W 0 = X W N 2 = W 0 lastS W = W N 1
64 63 preq1d W Word Vtx G W = N N 3 W N ClWWalksN G W 0 = X W N 2 = W 0 lastS W W 0 = W N 1 W 0
65 64 eleq1d W Word Vtx G W = N N 3 W N ClWWalksN G W 0 = X W N 2 = W 0 lastS W W 0 Edg G W N 1 W 0 Edg G
66 65 biimpd W Word Vtx G W = N N 3 W N ClWWalksN G W 0 = X W N 2 = W 0 lastS W W 0 Edg G W N 1 W 0 Edg G
67 66 ex W Word Vtx G W = N N 3 W N ClWWalksN G W 0 = X W N 2 = W 0 lastS W W 0 Edg G W N 1 W 0 Edg G
68 67 com23 W Word Vtx G W = N lastS W W 0 Edg G N 3 W N ClWWalksN G W 0 = X W N 2 = W 0 W N 1 W 0 Edg G
69 68 a1d W Word Vtx G W = N i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G N 3 W N ClWWalksN G W 0 = X W N 2 = W 0 W N 1 W 0 Edg G
70 69 3imp W Word Vtx G W = N i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G N 3 W N ClWWalksN G W 0 = X W N 2 = W 0 W N 1 W 0 Edg G
71 59 70 mpcom N 3 W N ClWWalksN G W 0 = X W N 2 = W 0 W N 1 W 0 Edg G
72 55 71 eqeltrd N 3 W N ClWWalksN G W 0 = X W N 2 = W 0 X W N 1 Edg G
73 1 72 syl3an2b N 3 W X ClWWalksNOn G N W N 2 = W 0 X W N 1 Edg G
74 eqid ClWWalksNOn G = ClWWalksNOn G
75 74 2 56 s2elclwwlknon2 X Vtx G W N 1 Vtx G X W N 1 Edg G ⟨“ X W N 1 ”⟩ X ClWWalksNOn G 2
76 33 49 73 75 syl3anc N 3 W X ClWWalksNOn G N W N 2 = W 0 ⟨“ X W N 1 ”⟩ X ClWWalksNOn G 2
77 30 76 eqeltrd N 3 W X ClWWalksNOn G N W N 2 = W 0 W substr N 2 N X ClWWalksNOn G 2