Metamath Proof Explorer


Theorem 2clwwlkel

Description: Characterization of an element of the value of operation C , i.e., of a word being a double loop of length N on vertex X . (Contributed by Alexander van der Vekens, 24-Sep-2018) (Revised by AV, 29-May-2021) (Revised by AV, 20-Apr-2022)

Ref Expression
Hypothesis 2clwwlk.c C = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
Assertion 2clwwlkel X V N 2 W X C N W X ClWWalksNOn G N W N 2 = X

Proof

Step Hyp Ref Expression
1 2clwwlk.c C = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
2 1 2clwwlk X V N 2 X C N = w X ClWWalksNOn G N | w N 2 = X
3 2 eleq2d X V N 2 W X C N W w X ClWWalksNOn G N | w N 2 = X
4 fveq1 w = W w N 2 = W N 2
5 4 eqeq1d w = W w N 2 = X W N 2 = X
6 5 elrab W w X ClWWalksNOn G N | w N 2 = X W X ClWWalksNOn G N W N 2 = X
7 3 6 bitrdi X V N 2 W X C N W X ClWWalksNOn G N W N 2 = X