Metamath Proof Explorer


Theorem 2clwwlklem

Description: Lemma for clwwnonrepclwwnon and extwwlkfab . (Contributed by Alexander van der Vekens, 18-Sep-2018) (Revised by AV, 10-May-2022) (Revised by AV, 30-Oct-2022)

Ref Expression
Assertion 2clwwlklem W N ClWWalksN G N 3 W prefix N 2 0 = W 0

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 clwwlknwrd W N ClWWalksN G W Word Vtx G
3 ige3m2fz N 3 N 2 1 N
4 3 adantl W N ClWWalksN G N 3 N 2 1 N
5 clwwlknlen W N ClWWalksN G W = N
6 5 oveq2d W N ClWWalksN G 1 W = 1 N
7 6 eleq2d W N ClWWalksN G N 2 1 W N 2 1 N
8 7 adantr W N ClWWalksN G N 3 N 2 1 W N 2 1 N
9 4 8 mpbird W N ClWWalksN G N 3 N 2 1 W
10 pfxfv0 W Word Vtx G N 2 1 W W prefix N 2 0 = W 0
11 2 9 10 syl2an2r W N ClWWalksN G N 3 W prefix N 2 0 = W 0