Step |
Hyp |
Ref |
Expression |
1 |
|
cshwlen |
|
2 |
1
|
3adant3 |
|
3 |
|
cshwcl |
|
4 |
|
cshwlen |
|
5 |
3 4
|
sylan |
|
6 |
5
|
3adant2 |
|
7 |
|
simp1 |
|
8 |
|
zaddcl |
|
9 |
8
|
3adant1 |
|
10 |
|
cshwlen |
|
11 |
7 9 10
|
syl2anc |
|
12 |
2 6 11
|
3eqtr4d |
|
13 |
6 2
|
eqtrd |
|
14 |
13
|
oveq2d |
|
15 |
14
|
eleq2d |
|
16 |
3
|
3ad2ant1 |
|
17 |
16
|
adantr |
|
18 |
|
simpl3 |
|
19 |
2
|
oveq2d |
|
20 |
19
|
eleq2d |
|
21 |
20
|
biimpar |
|
22 |
|
cshwidxmod |
|
23 |
17 18 21 22
|
syl3anc |
|
24 |
|
simpl1 |
|
25 |
|
simpl2 |
|
26 |
|
elfzo0 |
|
27 |
|
nn0z |
|
28 |
27
|
ad2antrr |
|
29 |
|
simpr3 |
|
30 |
28 29
|
zaddcld |
|
31 |
|
simplr |
|
32 |
30 31
|
jca |
|
33 |
32
|
ex |
|
34 |
33
|
3adant3 |
|
35 |
26 34
|
sylbi |
|
36 |
35
|
impcom |
|
37 |
|
zmodfzo |
|
38 |
36 37
|
syl |
|
39 |
1
|
oveq2d |
|
40 |
39
|
eleq1d |
|
41 |
40
|
3adant3 |
|
42 |
41
|
adantr |
|
43 |
38 42
|
mpbird |
|
44 |
|
cshwidxmod |
|
45 |
24 25 43 44
|
syl3anc |
|
46 |
|
nn0re |
|
47 |
46
|
ad2antrr |
|
48 |
|
zre |
|
49 |
48
|
ad2antll |
|
50 |
47 49
|
readdcld |
|
51 |
|
zre |
|
52 |
51
|
ad2antrl |
|
53 |
|
nnrp |
|
54 |
53
|
ad2antlr |
|
55 |
|
modaddmod |
|
56 |
50 52 54 55
|
syl3anc |
|
57 |
|
nn0cn |
|
58 |
57
|
ad2antrr |
|
59 |
|
zcn |
|
60 |
59
|
ad2antrl |
|
61 |
|
zcn |
|
62 |
61
|
ad2antll |
|
63 |
|
add32r |
|
64 |
58 60 62 63
|
syl3anc |
|
65 |
64
|
oveq1d |
|
66 |
56 65
|
eqtr4d |
|
67 |
66
|
ex |
|
68 |
67
|
3adant3 |
|
69 |
26 68
|
sylbi |
|
70 |
69
|
impcom |
|
71 |
70
|
3adantl1 |
|
72 |
71
|
fveq2d |
|
73 |
2
|
adantr |
|
74 |
73
|
oveq2d |
|
75 |
74
|
oveq1d |
|
76 |
75
|
fvoveq1d |
|
77 |
9
|
adantr |
|
78 |
|
simpr |
|
79 |
|
cshwidxmod |
|
80 |
24 77 78 79
|
syl3anc |
|
81 |
72 76 80
|
3eqtr4d |
|
82 |
23 45 81
|
3eqtrd |
|
83 |
82
|
ex |
|
84 |
15 83
|
sylbid |
|
85 |
84
|
ralrimiv |
|
86 |
|
cshwcl |
|
87 |
3 86
|
syl |
|
88 |
|
cshwcl |
|
89 |
|
eqwrd |
|
90 |
87 88 89
|
syl2anc |
|
91 |
90
|
3ad2ant1 |
|
92 |
12 85 91
|
mpbir2and |
|