Metamath Proof Explorer


Theorem 2cshwcom

Description: Cyclically shifting a word two times is commutative. (Contributed by AV, 21-Apr-2018) (Revised by AV, 5-Jun-2018) (Revised by Mario Carneiro/AV, 1-Nov-2018)

Ref Expression
Assertion 2cshwcom W Word V N M W cyclShift N cyclShift M = W cyclShift M cyclShift N

Proof

Step Hyp Ref Expression
1 zcn M M
2 zcn N N
3 addcom M N M + N = N + M
4 1 2 3 syl2anr N M M + N = N + M
5 4 3adant1 W Word V N M M + N = N + M
6 5 oveq2d W Word V N M W cyclShift M + N = W cyclShift N + M
7 2cshw W Word V M N W cyclShift M cyclShift N = W cyclShift M + N
8 7 3com23 W Word V N M W cyclShift M cyclShift N = W cyclShift M + N
9 2cshw W Word V N M W cyclShift N cyclShift M = W cyclShift N + M
10 6 8 9 3eqtr4rd W Word V N M W cyclShift N cyclShift M = W cyclShift M cyclShift N