Metamath Proof Explorer


Theorem 2cshwid

Description: Cyclically shifting a word two times resulting in the word itself. (Contributed by AV, 7-Apr-2018) (Revised by AV, 5-Jun-2018) (Revised by AV, 1-Nov-2018)

Ref Expression
Assertion 2cshwid W Word V N W cyclShift N cyclShift W N = W

Proof

Step Hyp Ref Expression
1 lencl W Word V W 0
2 1 nn0zd W Word V W
3 zsubcl W N W N
4 2 3 sylan W Word V N W N
5 2cshw W Word V N W N W cyclShift N cyclShift W N = W cyclShift N + W - N
6 4 5 mpd3an3 W Word V N W cyclShift N cyclShift W N = W cyclShift N + W - N
7 zcn N N
8 1 nn0cnd W Word V W
9 pncan3 N W N + W - N = W
10 7 8 9 syl2anr W Word V N N + W - N = W
11 10 oveq2d W Word V N W cyclShift N + W - N = W cyclShift W
12 cshwn W Word V W cyclShift W = W
13 12 adantr W Word V N W cyclShift W = W
14 6 11 13 3eqtrd W Word V N W cyclShift N cyclShift W N = W