Metamath Proof Explorer


Theorem 2cycl2d

Description: Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023)

Ref Expression
Hypotheses 2cycl2d.1 P = ⟨“ ABA ”⟩
2cycl2d.2 F = ⟨“ JK ”⟩
2cycl2d.3 φ A V B V
2cycl2d.4 φ A B
2cycl2d.5 φ A B I J A B I K
2cycl2d.6 V = Vtx G
2cycl2d.7 I = iEdg G
2cycl2d.8 φ J K
Assertion 2cycl2d φ F Cycles G P

Proof

Step Hyp Ref Expression
1 2cycl2d.1 P = ⟨“ ABA ”⟩
2 2cycl2d.2 F = ⟨“ JK ”⟩
3 2cycl2d.3 φ A V B V
4 2cycl2d.4 φ A B
5 2cycl2d.5 φ A B I J A B I K
6 2cycl2d.6 V = Vtx G
7 2cycl2d.7 I = iEdg G
8 2cycl2d.8 φ J K
9 simpl A V B V A V
10 3 9 jccir φ A V B V A V
11 df-3an A V B V A V A V B V A V
12 10 11 sylibr φ A V B V A V
13 4 necomd φ B A
14 4 13 jca φ A B B A
15 prcom A B = B A
16 15 sseq1i A B I K B A I K
17 16 anbi2i A B I J A B I K A B I J B A I K
18 5 17 sylib φ A B I J B A I K
19 eqidd φ A = A
20 1 2 12 14 18 6 7 8 19 2cycld φ F Cycles G P