Metamath Proof Explorer


Theorem 2dom

Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004)

Ref Expression
Assertion 2dom 2 𝑜 A x A y A ¬ x = y

Proof

Step Hyp Ref Expression
1 df2o2 2 𝑜 =
2 1 breq1i 2 𝑜 A A
3 brdomi A f f : 1-1 A
4 2 3 sylbi 2 𝑜 A f f : 1-1 A
5 f1f f : 1-1 A f : A
6 0ex V
7 6 prid1
8 ffvelrn f : A f A
9 5 7 8 sylancl f : 1-1 A f A
10 snex V
11 10 prid2
12 ffvelrn f : A f A
13 5 11 12 sylancl f : 1-1 A f A
14 0nep0
15 14 neii ¬ =
16 f1fveq f : 1-1 A f = f =
17 7 11 16 mpanr12 f : 1-1 A f = f =
18 15 17 mtbiri f : 1-1 A ¬ f = f
19 eqeq1 x = f x = y f = y
20 19 notbid x = f ¬ x = y ¬ f = y
21 eqeq2 y = f f = y f = f
22 21 notbid y = f ¬ f = y ¬ f = f
23 20 22 rspc2ev f A f A ¬ f = f x A y A ¬ x = y
24 9 13 18 23 syl3anc f : 1-1 A x A y A ¬ x = y
25 24 exlimiv f f : 1-1 A x A y A ¬ x = y
26 4 25 syl 2 𝑜 A x A y A ¬ x = y