Metamath Proof Explorer


Theorem 2dvdsoddp1

Description: 2 divides an odd number increased by 1. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion 2dvdsoddp1 Z Odd 2 Z + 1

Proof

Step Hyp Ref Expression
1 2ndvdsodd Z Odd ¬ 2 Z
2 oddz Z Odd Z
3 oddp1even Z ¬ 2 Z 2 Z + 1
4 2 3 syl Z Odd ¬ 2 Z 2 Z + 1
5 1 4 mpbid Z Odd 2 Z + 1