Metamath Proof Explorer


Theorem 2efiatan

Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion 2efiatan A dom arctan e 2 i arctan A = 2 i A + i 1

Proof

Step Hyp Ref Expression
1 atanval A dom arctan arctan A = i 2 log 1 i A log 1 + i A
2 1 oveq2d A dom arctan 2 i arctan A = 2 i i 2 log 1 i A log 1 + i A
3 2cn 2
4 3 a1i A dom arctan 2
5 ax-icn i
6 5 a1i A dom arctan i
7 atancl A dom arctan arctan A
8 4 6 7 mulassd A dom arctan 2 i arctan A = 2 i arctan A
9 halfcl i i 2
10 5 9 ax-mp i 2
11 3 5 10 mulassi 2 i i 2 = 2 i i 2
12 3 5 10 mul12i 2 i i 2 = i 2 i 2
13 2ne0 2 0
14 5 3 13 divcan2i 2 i 2 = i
15 14 oveq2i i 2 i 2 = i i
16 ixi i i = 1
17 15 16 eqtri i 2 i 2 = 1
18 11 12 17 3eqtri 2 i i 2 = 1
19 18 oveq1i 2 i i 2 log 1 i A log 1 + i A = -1 log 1 i A log 1 + i A
20 ax-1cn 1
21 atandm2 A dom arctan A 1 i A 0 1 + i A 0
22 21 simp1bi A dom arctan A
23 mulcl i A i A
24 5 22 23 sylancr A dom arctan i A
25 subcl 1 i A 1 i A
26 20 24 25 sylancr A dom arctan 1 i A
27 21 simp2bi A dom arctan 1 i A 0
28 26 27 logcld A dom arctan log 1 i A
29 addcl 1 i A 1 + i A
30 20 24 29 sylancr A dom arctan 1 + i A
31 21 simp3bi A dom arctan 1 + i A 0
32 30 31 logcld A dom arctan log 1 + i A
33 28 32 subcld A dom arctan log 1 i A log 1 + i A
34 33 mulm1d A dom arctan -1 log 1 i A log 1 + i A = log 1 i A log 1 + i A
35 19 34 syl5eq A dom arctan 2 i i 2 log 1 i A log 1 + i A = log 1 i A log 1 + i A
36 2mulicn 2 i
37 36 a1i A dom arctan 2 i
38 10 a1i A dom arctan i 2
39 37 38 33 mulassd A dom arctan 2 i i 2 log 1 i A log 1 + i A = 2 i i 2 log 1 i A log 1 + i A
40 28 32 negsubdi2d A dom arctan log 1 i A log 1 + i A = log 1 + i A log 1 i A
41 35 39 40 3eqtr3d A dom arctan 2 i i 2 log 1 i A log 1 + i A = log 1 + i A log 1 i A
42 2 8 41 3eqtr3d A dom arctan 2 i arctan A = log 1 + i A log 1 i A
43 42 fveq2d A dom arctan e 2 i arctan A = e log 1 + i A log 1 i A
44 efsub log 1 + i A log 1 i A e log 1 + i A log 1 i A = e log 1 + i A e log 1 i A
45 32 28 44 syl2anc A dom arctan e log 1 + i A log 1 i A = e log 1 + i A e log 1 i A
46 eflog 1 + i A 1 + i A 0 e log 1 + i A = 1 + i A
47 30 31 46 syl2anc A dom arctan e log 1 + i A = 1 + i A
48 eflog 1 i A 1 i A 0 e log 1 i A = 1 i A
49 26 27 48 syl2anc A dom arctan e log 1 i A = 1 i A
50 47 49 oveq12d A dom arctan e log 1 + i A e log 1 i A = 1 + i A 1 i A
51 negsub i A i + A = i A
52 5 22 51 sylancr A dom arctan i + A = i A
53 6 mulid1d A dom arctan i 1 = i
54 16 oveq1i i i A = -1 A
55 6 6 22 mulassd A dom arctan i i A = i i A
56 22 mulm1d A dom arctan -1 A = A
57 54 55 56 3eqtr3a A dom arctan i i A = A
58 53 57 oveq12d A dom arctan i 1 + i i A = i + A
59 6 22 6 pnpcan2d A dom arctan i + i - A + i = i A
60 52 58 59 3eqtr4d A dom arctan i 1 + i i A = i + i - A + i
61 20 a1i A dom arctan 1
62 6 61 24 adddid A dom arctan i 1 + i A = i 1 + i i A
63 6 2timesd A dom arctan 2 i = i + i
64 63 oveq1d A dom arctan 2 i A + i = i + i - A + i
65 60 62 64 3eqtr4d A dom arctan i 1 + i A = 2 i A + i
66 6 61 24 subdid A dom arctan i 1 i A = i 1 i i A
67 53 57 oveq12d A dom arctan i 1 i i A = i A
68 subneg i A i A = i + A
69 5 22 68 sylancr A dom arctan i A = i + A
70 67 69 eqtrd A dom arctan i 1 i i A = i + A
71 addcom i A i + A = A + i
72 5 22 71 sylancr A dom arctan i + A = A + i
73 66 70 72 3eqtrd A dom arctan i 1 i A = A + i
74 65 73 oveq12d A dom arctan i 1 + i A i 1 i A = 2 i A + i A + i
75 ine0 i 0
76 75 a1i A dom arctan i 0
77 30 26 6 27 76 divcan5d A dom arctan i 1 + i A i 1 i A = 1 + i A 1 i A
78 addcl A i A + i
79 22 5 78 sylancl A dom arctan A + i
80 subneg A i A i = A + i
81 22 5 80 sylancl A dom arctan A i = A + i
82 atandm A dom arctan A A i A i
83 82 simp2bi A dom arctan A i
84 negicn i
85 subeq0 A i A i = 0 A = i
86 85 necon3bid A i A i 0 A i
87 22 84 86 sylancl A dom arctan A i 0 A i
88 83 87 mpbird A dom arctan A i 0
89 81 88 eqnetrrd A dom arctan A + i 0
90 37 79 79 89 divsubdird A dom arctan 2 i A + i A + i = 2 i A + i A + i A + i
91 74 77 90 3eqtr3d A dom arctan 1 + i A 1 i A = 2 i A + i A + i A + i
92 79 89 dividd A dom arctan A + i A + i = 1
93 92 oveq2d A dom arctan 2 i A + i A + i A + i = 2 i A + i 1
94 50 91 93 3eqtrd A dom arctan e log 1 + i A e log 1 i A = 2 i A + i 1
95 43 45 94 3eqtrd A dom arctan e 2 i arctan A = 2 i A + i 1