Metamath Proof Explorer


Theorem 2elresin

Description: Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994)

Ref Expression
Assertion 2elresin F Fn A G Fn B x y F x z G x y F A B x z G A B

Proof

Step Hyp Ref Expression
1 fnop F Fn A x y F x A
2 fnop G Fn B x z G x B
3 1 2 anim12i F Fn A x y F G Fn B x z G x A x B
4 3 an4s F Fn A G Fn B x y F x z G x A x B
5 elin x A B x A x B
6 4 5 sylibr F Fn A G Fn B x y F x z G x A B
7 vex y V
8 7 opres x A B x y F A B x y F
9 vex z V
10 9 opres x A B x z G A B x z G
11 8 10 anbi12d x A B x y F A B x z G A B x y F x z G
12 11 biimprd x A B x y F x z G x y F A B x z G A B
13 6 12 syl F Fn A G Fn B x y F x z G x y F x z G x y F A B x z G A B
14 13 ex F Fn A G Fn B x y F x z G x y F x z G x y F A B x z G A B
15 14 pm2.43d F Fn A G Fn B x y F x z G x y F A B x z G A B
16 resss F A B F
17 16 sseli x y F A B x y F
18 resss G A B G
19 18 sseli x z G A B x z G
20 17 19 anim12i x y F A B x z G A B x y F x z G
21 15 20 impbid1 F Fn A G Fn B x y F x z G x y F A B x z G A B