Metamath Proof Explorer


Theorem 2exnaln

Description: Theorem *11.22 in WhiteheadRussell p. 160. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 2exnaln x y φ ¬ x y ¬ φ

Proof

Step Hyp Ref Expression
1 df-ex x y φ ¬ x ¬ y φ
2 alnex y ¬ φ ¬ y φ
3 2 albii x y ¬ φ x ¬ y φ
4 1 3 xchbinxr x y φ ¬ x y ¬ φ