Metamath Proof Explorer


Theorem 2exnexn

Description: Theorem *11.51 in WhiteheadRussell p. 164. (Contributed by Andrew Salmon, 24-May-2011) (Proof shortened by Wolf Lammen, 25-Sep-2014)

Ref Expression
Assertion 2exnexn x y φ ¬ x y ¬ φ

Proof

Step Hyp Ref Expression
1 alexn x y ¬ φ ¬ x y φ
2 1 con2bii x y φ ¬ x y ¬ φ