Metamath Proof Explorer


Theorem 2exp11

Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021)

Ref Expression
Assertion 2exp11 2 11 = 2048

Proof

Step Hyp Ref Expression
1 8p3e11 8 + 3 = 11
2 1 eqcomi 11 = 8 + 3
3 2 oveq2i 2 11 = 2 8 + 3
4 2cn 2
5 8nn0 8 0
6 3nn0 3 0
7 expadd 2 8 0 3 0 2 8 + 3 = 2 8 2 3
8 4 5 6 7 mp3an 2 8 + 3 = 2 8 2 3
9 3 8 eqtri 2 11 = 2 8 2 3
10 2exp8 2 8 = 256
11 cu2 2 3 = 8
12 10 11 oveq12i 2 8 2 3 = 256 8
13 2nn0 2 0
14 5nn0 5 0
15 13 14 deccl 25 0
16 6nn0 6 0
17 eqid 256 = 256
18 4nn0 4 0
19 0nn0 0 0
20 13 19 deccl 20 0
21 eqid 25 = 25
22 1nn0 1 0
23 8cn 8
24 8t2e16 8 2 = 16
25 23 4 24 mulcomli 2 8 = 16
26 1p1e2 1 + 1 = 2
27 6p4e10 6 + 4 = 10
28 22 16 18 25 26 19 27 decaddci 2 8 + 4 = 20
29 5cn 5
30 8t5e40 8 5 = 40
31 23 29 30 mulcomli 5 8 = 40
32 5 13 14 21 19 18 28 31 decmul1c 25 8 = 200
33 4cn 4
34 33 addid2i 0 + 4 = 4
35 20 19 18 32 34 decaddi 25 8 + 4 = 204
36 6cn 6
37 8t6e48 8 6 = 48
38 23 36 37 mulcomli 6 8 = 48
39 5 15 16 17 5 18 35 38 decmul1c 256 8 = 2048
40 12 39 eqtri 2 8 2 3 = 2048
41 9 40 eqtri 2 11 = 2048