Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Decimal arithmetic (cont.)
2exp16
Next ⟩
3exp3
Metamath Proof Explorer
Ascii
Unicode
Theorem
2exp16
Description:
Two to the sixteenth power is 65536.
(Contributed by
Mario Carneiro
, 20-Apr-2015)
Ref
Expression
Assertion
2exp16
⊢
2
16
=
65536
Proof
Step
Hyp
Ref
Expression
1
2nn0
⊢
2
∈
ℕ
0
2
8nn0
⊢
8
∈
ℕ
0
3
8cn
⊢
8
∈
ℂ
4
2cn
⊢
2
∈
ℂ
5
8t2e16
⊢
8
⋅
2
=
16
6
3
4
5
mulcomli
⊢
2
⋅
8
=
16
7
2exp8
⊢
2
8
=
256
8
5nn0
⊢
5
∈
ℕ
0
9
1
8
deccl
⊢
25
∈
ℕ
0
10
6nn0
⊢
6
∈
ℕ
0
11
9
10
deccl
⊢
256
∈
ℕ
0
12
eqid
⊢
256
=
256
13
1nn0
⊢
1
∈
ℕ
0
14
13
8
deccl
⊢
15
∈
ℕ
0
15
3nn0
⊢
3
∈
ℕ
0
16
14
15
deccl
⊢
153
∈
ℕ
0
17
eqid
⊢
25
=
25
18
eqid
⊢
153
=
153
19
13
1
deccl
⊢
12
∈
ℕ
0
20
19
2
deccl
⊢
128
∈
ℕ
0
21
4nn0
⊢
4
∈
ℕ
0
22
13
21
deccl
⊢
14
∈
ℕ
0
23
eqid
⊢
15
=
15
24
eqid
⊢
128
=
128
25
0nn0
⊢
0
∈
ℕ
0
26
13
dec0h
⊢
1
=
01
27
eqid
⊢
12
=
12
28
0p1e1
⊢
0
+
1
=
1
29
1p2e3
⊢
1
+
2
=
3
30
25
13
13
1
26
27
28
29
decadd
⊢
1
+
12
=
13
31
3p1e4
⊢
3
+
1
=
4
32
13
15
13
30
31
decaddi
⊢
1
+
12
+
1
=
14
33
5cn
⊢
5
∈
ℂ
34
8p5e13
⊢
8
+
5
=
13
35
3
33
34
addcomli
⊢
5
+
8
=
13
36
13
8
19
2
23
24
32
15
35
decaddc
⊢
15
+
128
=
143
37
eqid
⊢
14
=
14
38
4p1e5
⊢
4
+
1
=
5
39
13
21
13
37
38
decaddi
⊢
14
+
1
=
15
40
2t2e4
⊢
2
⋅
2
=
4
41
1p1e2
⊢
1
+
1
=
2
42
40
41
oveq12i
⊢
2
⋅
2
+
1
+
1
=
4
+
2
43
4p2e6
⊢
4
+
2
=
6
44
42
43
eqtri
⊢
2
⋅
2
+
1
+
1
=
6
45
5t2e10
⊢
5
⋅
2
=
10
46
33
addid2i
⊢
0
+
5
=
5
47
13
25
8
45
46
decaddi
⊢
5
⋅
2
+
5
=
15
48
1
8
13
8
17
39
1
8
13
44
47
decmac
⊢
25
⋅
2
+
14
+
1
=
65
49
6t2e12
⊢
6
⋅
2
=
12
50
3cn
⊢
3
∈
ℂ
51
3p2e5
⊢
3
+
2
=
5
52
50
4
51
addcomli
⊢
2
+
3
=
5
53
13
1
15
49
52
decaddi
⊢
6
⋅
2
+
3
=
15
54
9
10
22
15
12
36
1
8
13
48
53
decmac
⊢
256
⋅
2
+
15
+
128
=
655
55
15
dec0h
⊢
3
=
03
56
50
addid2i
⊢
0
+
3
=
3
57
56
55
eqtri
⊢
0
+
3
=
03
58
4
addid2i
⊢
0
+
2
=
2
59
58
oveq2i
⊢
2
⋅
5
+
0
+
2
=
2
⋅
5
+
2
60
33
4
45
mulcomli
⊢
2
⋅
5
=
10
61
13
25
1
60
58
decaddi
⊢
2
⋅
5
+
2
=
12
62
59
61
eqtri
⊢
2
⋅
5
+
0
+
2
=
12
63
5t5e25
⊢
5
⋅
5
=
25
64
5p3e8
⊢
5
+
3
=
8
65
1
8
15
63
64
decaddi
⊢
5
⋅
5
+
3
=
28
66
1
8
25
15
17
57
8
2
1
62
65
decmac
⊢
25
⋅
5
+
0
+
3
=
128
67
6t5e30
⊢
6
⋅
5
=
30
68
15
25
15
67
56
decaddi
⊢
6
⋅
5
+
3
=
33
69
9
10
25
15
12
55
8
15
15
66
68
decmac
⊢
256
⋅
5
+
3
=
1283
70
1
8
14
15
17
18
11
15
20
54
69
decma2c
⊢
256
⋅
25
+
153
=
6553
71
6cn
⊢
6
∈
ℂ
72
71
4
49
mulcomli
⊢
2
⋅
6
=
12
73
13
1
15
72
52
decaddi
⊢
2
⋅
6
+
3
=
15
74
71
33
67
mulcomli
⊢
5
⋅
6
=
30
75
15
25
15
74
56
decaddi
⊢
5
⋅
6
+
3
=
33
76
1
8
15
17
10
15
15
73
75
decrmac
⊢
25
⋅
6
+
3
=
153
77
6t6e36
⊢
6
⋅
6
=
36
78
10
9
10
12
10
15
76
77
decmul1c
⊢
256
⋅
6
=
1536
79
11
9
10
12
10
16
70
78
decmul2c
⊢
256
⋅
256
=
65536
80
1
2
6
7
79
numexp2x
⊢
2
16
=
65536