Metamath Proof Explorer


Theorem 2exp5

Description: Two to the fifth power is 32. (Contributed by AV, 16-Aug-2021)

Ref Expression
Assertion 2exp5 2 5 = 32

Proof

Step Hyp Ref Expression
1 3p2e5 3 + 2 = 5
2 1 eqcomi 5 = 3 + 2
3 2 oveq2i 2 5 = 2 3 + 2
4 2cn 2
5 3nn0 3 0
6 2nn0 2 0
7 expadd 2 3 0 2 0 2 3 + 2 = 2 3 2 2
8 4 5 6 7 mp3an 2 3 + 2 = 2 3 2 2
9 cu2 2 3 = 8
10 sq2 2 2 = 4
11 9 10 oveq12i 2 3 2 2 = 8 4
12 8 11 eqtri 2 3 + 2 = 8 4
13 3 12 eqtri 2 5 = 8 4
14 8t4e32 8 4 = 32
15 13 14 eqtri 2 5 = 32