Metamath Proof Explorer


Theorem 2exp8

Description: Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 2exp8 2 8 = 256

Proof

Step Hyp Ref Expression
1 2nn0 2 0
2 4nn0 4 0
3 2 nn0cni 4
4 2cn 2
5 4t2e8 4 2 = 8
6 3 4 5 mulcomli 2 4 = 8
7 2exp4 2 4 = 16
8 1nn0 1 0
9 6nn0 6 0
10 8 9 deccl 16 0
11 eqid 16 = 16
12 9nn0 9 0
13 10 nn0cni 16
14 13 mulid1i 16 1 = 16
15 1p1e2 1 + 1 = 2
16 5nn0 5 0
17 9cn 9
18 6cn 6
19 9p6e15 9 + 6 = 15
20 17 18 19 addcomli 6 + 9 = 15
21 8 9 12 14 15 16 20 decaddci 16 1 + 9 = 25
22 3nn0 3 0
23 18 mulid2i 1 6 = 6
24 23 oveq1i 1 6 + 3 = 6 + 3
25 6p3e9 6 + 3 = 9
26 24 25 eqtri 1 6 + 3 = 9
27 6t6e36 6 6 = 36
28 9 8 9 11 9 22 26 27 decmul1c 16 6 = 96
29 10 8 9 11 9 12 21 28 decmul2c 16 16 = 256
30 1 2 6 7 29 numexp2x 2 8 = 256