Metamath Proof Explorer


Theorem 2expltfac

Description: The factorial grows faster than two to the power N . (Contributed by Mario Carneiro, 15-Sep-2016)

Ref Expression
Assertion 2expltfac N 4 2 N < N !

Proof

Step Hyp Ref Expression
1 oveq2 x = 4 2 x = 2 4
2 2exp4 2 4 = 16
3 1 2 eqtrdi x = 4 2 x = 16
4 fveq2 x = 4 x ! = 4 !
5 fac4 4 ! = 24
6 4 5 eqtrdi x = 4 x ! = 24
7 3 6 breq12d x = 4 2 x < x ! 16 < 24
8 oveq2 x = n 2 x = 2 n
9 fveq2 x = n x ! = n !
10 8 9 breq12d x = n 2 x < x ! 2 n < n !
11 oveq2 x = n + 1 2 x = 2 n + 1
12 fveq2 x = n + 1 x ! = n + 1 !
13 11 12 breq12d x = n + 1 2 x < x ! 2 n + 1 < n + 1 !
14 oveq2 x = N 2 x = 2 N
15 fveq2 x = N x ! = N !
16 14 15 breq12d x = N 2 x < x ! 2 N < N !
17 1nn0 1 0
18 2nn0 2 0
19 6nn0 6 0
20 4nn0 4 0
21 6lt10 6 < 10
22 1lt2 1 < 2
23 17 18 19 20 21 22 decltc 16 < 24
24 2nn 2
25 24 a1i n 4 2 n < n ! 2
26 4nn 4
27 simpl n 4 2 n < n ! n 4
28 eluznn 4 n 4 n
29 26 27 28 sylancr n 4 2 n < n ! n
30 29 nnnn0d n 4 2 n < n ! n 0
31 25 30 nnexpcld n 4 2 n < n ! 2 n
32 31 nnred n 4 2 n < n ! 2 n
33 2re 2
34 33 a1i n 4 2 n < n ! 2
35 32 34 remulcld n 4 2 n < n ! 2 n 2
36 30 faccld n 4 2 n < n ! n !
37 36 nnred n 4 2 n < n ! n !
38 37 34 remulcld n 4 2 n < n ! n ! 2
39 29 nnred n 4 2 n < n ! n
40 1red n 4 2 n < n ! 1
41 39 40 readdcld n 4 2 n < n ! n + 1
42 37 41 remulcld n 4 2 n < n ! n ! n + 1
43 2rp 2 +
44 43 a1i n 4 2 n < n ! 2 +
45 simpr n 4 2 n < n ! 2 n < n !
46 32 37 44 45 ltmul1dd n 4 2 n < n ! 2 n 2 < n ! 2
47 36 nnnn0d n 4 2 n < n ! n ! 0
48 47 nn0ge0d n 4 2 n < n ! 0 n !
49 df-2 2 = 1 + 1
50 29 nnge1d n 4 2 n < n ! 1 n
51 40 39 40 50 leadd1dd n 4 2 n < n ! 1 + 1 n + 1
52 49 51 eqbrtrid n 4 2 n < n ! 2 n + 1
53 34 41 37 48 52 lemul2ad n 4 2 n < n ! n ! 2 n ! n + 1
54 35 38 42 46 53 ltletrd n 4 2 n < n ! 2 n 2 < n ! n + 1
55 2cnd n 4 2 n < n ! 2
56 55 30 expp1d n 4 2 n < n ! 2 n + 1 = 2 n 2
57 facp1 n 0 n + 1 ! = n ! n + 1
58 30 57 syl n 4 2 n < n ! n + 1 ! = n ! n + 1
59 54 56 58 3brtr4d n 4 2 n < n ! 2 n + 1 < n + 1 !
60 59 ex n 4 2 n < n ! 2 n + 1 < n + 1 !
61 7 10 13 16 23 60 uzind4i N 4 2 N < N !