Metamath Proof Explorer


Theorem 2exsb

Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005) (Proof shortened by Wolf Lammen, 30-Sep-2018)

Ref Expression
Assertion 2exsb x y φ z w x y x = z y = w φ

Proof

Step Hyp Ref Expression
1 nfv w φ
2 nfv z φ
3 1 2 2sb8ev x y φ z w z x w y φ
4 2sb6 z x w y φ x y x = z y = w φ
5 4 2exbii z w z x w y φ z w x y x = z y = w φ
6 3 5 bitri x y φ z w x y x = z y = w φ