Metamath Proof Explorer


Theorem 2fcoidinvd

Description: Show that a function is the inverse of a function if their compositions are the identity functions. (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses fcof1od.f φ F : A B
fcof1od.g φ G : B A
fcof1od.a φ G F = I A
fcof1od.b φ F G = I B
Assertion 2fcoidinvd φ F -1 = G

Proof

Step Hyp Ref Expression
1 fcof1od.f φ F : A B
2 fcof1od.g φ G : B A
3 fcof1od.a φ G F = I A
4 fcof1od.b φ F G = I B
5 1 2 3 4 fcof1od φ F : A 1-1 onto B
6 5 2 4 fcof1oinvd φ F -1 = G