Metamath Proof Explorer


Theorem 2fvcoidd

Description: Show that the composition of two functions is the identity function by applying both functions to each value of the domain of the first function. (Contributed by AV, 15-Dec-2019)

Ref Expression
Hypotheses 2fvcoidd.f φ F : A B
2fvcoidd.g φ G : B A
2fvcoidd.i φ a A G F a = a
Assertion 2fvcoidd φ G F = I A

Proof

Step Hyp Ref Expression
1 2fvcoidd.f φ F : A B
2 2fvcoidd.g φ G : B A
3 2fvcoidd.i φ a A G F a = a
4 fcompt G : B A F : A B G F = x A G F x
5 2 1 4 syl2anc φ G F = x A G F x
6 2fveq3 a = x G F a = G F x
7 id a = x a = x
8 6 7 eqeq12d a = x G F a = a G F x = x
9 8 rspccv a A G F a = a x A G F x = x
10 3 9 syl φ x A G F x = x
11 10 imp φ x A G F x = x
12 11 mpteq2dva φ x A G F x = x A x
13 mptresid I A = x A x
14 12 13 eqtr4di φ x A G F x = I A
15 5 14 eqtrd φ G F = I A