Metamath Proof Explorer


Theorem 2fvidf1od

Description: A function is bijective if it has an inverse function. (Contributed by AV, 15-Dec-2019)

Ref Expression
Hypotheses 2fvcoidd.f φ F : A B
2fvcoidd.g φ G : B A
2fvcoidd.i φ a A G F a = a
2fvidf1od.i φ b B F G b = b
Assertion 2fvidf1od φ F : A 1-1 onto B

Proof

Step Hyp Ref Expression
1 2fvcoidd.f φ F : A B
2 2fvcoidd.g φ G : B A
3 2fvcoidd.i φ a A G F a = a
4 2fvidf1od.i φ b B F G b = b
5 1 2 3 2fvcoidd φ G F = I A
6 2 1 4 2fvcoidd φ F G = I B
7 1 2 5 6 fcof1od φ F : A 1-1 onto B