Metamath Proof Explorer


Theorem 2gencl

Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996)

Ref Expression
Hypotheses 2gencl.1 C S x R A = C
2gencl.2 D S y R B = D
2gencl.3 A = C φ ψ
2gencl.4 B = D ψ χ
2gencl.5 x R y R φ
Assertion 2gencl C S D S χ

Proof

Step Hyp Ref Expression
1 2gencl.1 C S x R A = C
2 2gencl.2 D S y R B = D
3 2gencl.3 A = C φ ψ
4 2gencl.4 B = D ψ χ
5 2gencl.5 x R y R φ
6 df-rex y R B = D y y R B = D
7 2 6 bitri D S y y R B = D
8 4 imbi2d B = D C S ψ C S χ
9 df-rex x R A = C x x R A = C
10 1 9 bitri C S x x R A = C
11 3 imbi2d A = C y R φ y R ψ
12 5 ex x R y R φ
13 10 11 12 gencl C S y R ψ
14 13 com12 y R C S ψ
15 7 8 14 gencl D S C S χ
16 15 impcom C S D S χ