Metamath Proof Explorer


Theorem 2halves

Description: Two halves make a whole. (Contributed by NM, 11-Apr-2005)

Ref Expression
Assertion 2halves A A 2 + A 2 = A

Proof

Step Hyp Ref Expression
1 2times A 2 A = A + A
2 1 oveq1d A 2 A 2 = A + A 2
3 2cn 2
4 2ne0 2 0
5 divcan3 A 2 2 0 2 A 2 = A
6 3 4 5 mp3an23 A 2 A 2 = A
7 2cnne0 2 2 0
8 divdir A A 2 2 0 A + A 2 = A 2 + A 2
9 7 8 mp3an3 A A A + A 2 = A 2 + A 2
10 9 anidms A A + A 2 = A 2 + A 2
11 2 6 10 3eqtr3rd A A 2 + A 2 = A