Database
REAL AND COMPLEX NUMBERS
Integer sets
Simple number properties
2halves
Next ⟩
halfpos2
Metamath Proof Explorer
Ascii
Unicode
Theorem
2halves
Description:
Two halves make a whole.
(Contributed by
NM
, 11-Apr-2005)
Ref
Expression
Assertion
2halves
⊢
A
∈
ℂ
→
A
2
+
A
2
=
A
Proof
Step
Hyp
Ref
Expression
1
2times
⊢
A
∈
ℂ
→
2
⁢
A
=
A
+
A
2
1
oveq1d
⊢
A
∈
ℂ
→
2
⁢
A
2
=
A
+
A
2
3
2cn
⊢
2
∈
ℂ
4
2ne0
⊢
2
≠
0
5
divcan3
⊢
A
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
2
⁢
A
2
=
A
6
3
4
5
mp3an23
⊢
A
∈
ℂ
→
2
⁢
A
2
=
A
7
2cnne0
⊢
2
∈
ℂ
∧
2
≠
0
8
divdir
⊢
A
∈
ℂ
∧
A
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
A
+
A
2
=
A
2
+
A
2
9
7
8
mp3an3
⊢
A
∈
ℂ
∧
A
∈
ℂ
→
A
+
A
2
=
A
2
+
A
2
10
9
anidms
⊢
A
∈
ℂ
→
A
+
A
2
=
A
2
+
A
2
11
2
6
10
3eqtr3rd
⊢
A
∈
ℂ
→
A
2
+
A
2
=
A