Metamath Proof Explorer


Theorem 2idl0

Description: Every ring contains a zero two-sided ideal. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses 2idl0.u I = 2Ideal R
2idl0.z 0 ˙ = 0 R
Assertion 2idl0 R Ring 0 ˙ I

Proof

Step Hyp Ref Expression
1 2idl0.u I = 2Ideal R
2 2idl0.z 0 ˙ = 0 R
3 eqid LIdeal R = LIdeal R
4 3 2 lidl0 R Ring 0 ˙ LIdeal R
5 eqid LIdeal opp r R = LIdeal opp r R
6 5 2 ridl0 R Ring 0 ˙ LIdeal opp r R
7 4 6 elind R Ring 0 ˙ LIdeal R LIdeal opp r R
8 eqid opp r R = opp r R
9 3 8 5 1 2idlval I = LIdeal R LIdeal opp r R
10 7 9 eleqtrrdi R Ring 0 ˙ I