Database
BASIC ALGEBRAIC STRUCTURES
Subring algebras and ideals
Two-sided ideals and quotient rings
2idl0
Next ⟩
2idl1
Metamath Proof Explorer
Ascii
Unicode
Theorem
2idl0
Description:
Every ring contains a zero two-sided ideal.
(Contributed by
AV
, 13-Feb-2025)
Ref
Expression
Hypotheses
2idl0.u
⊢
I
=
2Ideal
⁡
R
2idl0.z
⊢
0
˙
=
0
R
Assertion
2idl0
⊢
R
∈
Ring
→
0
˙
∈
I
Proof
Step
Hyp
Ref
Expression
1
2idl0.u
⊢
I
=
2Ideal
⁡
R
2
2idl0.z
⊢
0
˙
=
0
R
3
eqid
⊢
LIdeal
⁡
R
=
LIdeal
⁡
R
4
3
2
lidl0
⊢
R
∈
Ring
→
0
˙
∈
LIdeal
⁡
R
5
eqid
⊢
LIdeal
⁡
opp
r
⁡
R
=
LIdeal
⁡
opp
r
⁡
R
6
5
2
ridl0
⊢
R
∈
Ring
→
0
˙
∈
LIdeal
⁡
opp
r
⁡
R
7
4
6
elind
⊢
R
∈
Ring
→
0
˙
∈
LIdeal
⁡
R
∩
LIdeal
⁡
opp
r
⁡
R
8
eqid
⊢
opp
r
⁡
R
=
opp
r
⁡
R
9
3
8
5
1
2idlval
⊢
I
=
LIdeal
⁡
R
∩
LIdeal
⁡
opp
r
⁡
R
10
7
9
eleqtrrdi
⊢
R
∈
Ring
→
0
˙
∈
I