Metamath Proof Explorer


Theorem 2idlbas

Description: The base set of a two-sided ideal as structure. (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses 2idlbas.i φ I 2Ideal R
2idlbas.j J = R 𝑠 I
2idlbas.b B = Base J
Assertion 2idlbas φ B = I

Proof

Step Hyp Ref Expression
1 2idlbas.i φ I 2Ideal R
2 2idlbas.j J = R 𝑠 I
3 2idlbas.b B = Base J
4 eqid Base R = Base R
5 eqid 2Ideal R = 2Ideal R
6 4 5 2idlss I 2Ideal R I Base R
7 2 4 ressbas2 I Base R I = Base J
8 1 6 7 3syl φ I = Base J
9 3 8 eqtr4id φ B = I