Metamath Proof Explorer


Theorem 2idlcpblrng

Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025)

Ref Expression
Hypotheses 2idlcpblrng.x X = Base R
2idlcpblrng.r E = R ~ QG S
2idlcpblrng.i I = 2Ideal R
2idlcpblrng.t · ˙ = R
Assertion 2idlcpblrng R Rng S I S SubGrp R A E C B E D A · ˙ B E C · ˙ D

Proof

Step Hyp Ref Expression
1 2idlcpblrng.x X = Base R
2 2idlcpblrng.r E = R ~ QG S
3 2idlcpblrng.i I = 2Ideal R
4 2idlcpblrng.t · ˙ = R
5 simpl1 R Rng S I S SubGrp R A E C B E D R Rng
6 simpl3 R Rng S I S SubGrp R A E C B E D S SubGrp R
7 1 2 eqger S SubGrp R E Er X
8 6 7 syl R Rng S I S SubGrp R A E C B E D E Er X
9 simprl R Rng S I S SubGrp R A E C B E D A E C
10 8 9 ersym R Rng S I S SubGrp R A E C B E D C E A
11 rngabl R Rng R Abel
12 11 3ad2ant1 R Rng S I S SubGrp R R Abel
13 eqid LIdeal R = LIdeal R
14 eqid opp r R = opp r R
15 eqid LIdeal opp r R = LIdeal opp r R
16 13 14 15 3 2idlelb S I S LIdeal R S LIdeal opp r R
17 16 simplbi S I S LIdeal R
18 17 3ad2ant2 R Rng S I S SubGrp R S LIdeal R
19 18 adantr R Rng S I S SubGrp R A E C B E D S LIdeal R
20 1 13 lidlss S LIdeal R S X
21 19 20 syl R Rng S I S SubGrp R A E C B E D S X
22 eqid - R = - R
23 1 22 2 eqgabl R Abel S X C E A C X A X A - R C S
24 12 21 23 syl2an2r R Rng S I S SubGrp R A E C B E D C E A C X A X A - R C S
25 10 24 mpbid R Rng S I S SubGrp R A E C B E D C X A X A - R C S
26 25 simp2d R Rng S I S SubGrp R A E C B E D A X
27 simprr R Rng S I S SubGrp R A E C B E D B E D
28 1 22 2 eqgabl R Abel S X B E D B X D X D - R B S
29 12 21 28 syl2an2r R Rng S I S SubGrp R A E C B E D B E D B X D X D - R B S
30 27 29 mpbid R Rng S I S SubGrp R A E C B E D B X D X D - R B S
31 30 simp1d R Rng S I S SubGrp R A E C B E D B X
32 1 4 rngcl R Rng A X B X A · ˙ B X
33 5 26 31 32 syl3anc R Rng S I S SubGrp R A E C B E D A · ˙ B X
34 25 simp1d R Rng S I S SubGrp R A E C B E D C X
35 30 simp2d R Rng S I S SubGrp R A E C B E D D X
36 1 4 rngcl R Rng C X D X C · ˙ D X
37 5 34 35 36 syl3anc R Rng S I S SubGrp R A E C B E D C · ˙ D X
38 rnggrp R Rng R Grp
39 38 3ad2ant1 R Rng S I S SubGrp R R Grp
40 39 adantr R Rng S I S SubGrp R A E C B E D R Grp
41 1 4 rngcl R Rng C X B X C · ˙ B X
42 5 34 31 41 syl3anc R Rng S I S SubGrp R A E C B E D C · ˙ B X
43 1 22 grpnnncan2 R Grp C · ˙ D X A · ˙ B X C · ˙ B X C · ˙ D - R C · ˙ B - R A · ˙ B - R C · ˙ B = C · ˙ D - R A · ˙ B
44 40 37 33 42 43 syl13anc R Rng S I S SubGrp R A E C B E D C · ˙ D - R C · ˙ B - R A · ˙ B - R C · ˙ B = C · ˙ D - R A · ˙ B
45 1 4 22 5 34 35 31 rngsubdi R Rng S I S SubGrp R A E C B E D C · ˙ D - R B = C · ˙ D - R C · ˙ B
46 eqid 0 R = 0 R
47 46 subg0cl S SubGrp R 0 R S
48 47 3ad2ant3 R Rng S I S SubGrp R 0 R S
49 48 adantr R Rng S I S SubGrp R A E C B E D 0 R S
50 30 simp3d R Rng S I S SubGrp R A E C B E D D - R B S
51 46 1 4 13 rnglidlmcl R Rng S LIdeal R 0 R S C X D - R B S C · ˙ D - R B S
52 5 19 49 34 50 51 syl32anc R Rng S I S SubGrp R A E C B E D C · ˙ D - R B S
53 45 52 eqeltrrd R Rng S I S SubGrp R A E C B E D C · ˙ D - R C · ˙ B S
54 eqid opp r R = opp r R
55 1 4 14 54 opprmul B opp r R A - R C = A - R C · ˙ B
56 1 4 22 5 26 34 31 rngsubdir R Rng S I S SubGrp R A E C B E D A - R C · ˙ B = A · ˙ B - R C · ˙ B
57 55 56 eqtrid R Rng S I S SubGrp R A E C B E D B opp r R A - R C = A · ˙ B - R C · ˙ B
58 14 opprrng R Rng opp r R Rng
59 58 3ad2ant1 R Rng S I S SubGrp R opp r R Rng
60 59 adantr R Rng S I S SubGrp R A E C B E D opp r R Rng
61 16 simprbi S I S LIdeal opp r R
62 61 3ad2ant2 R Rng S I S SubGrp R S LIdeal opp r R
63 62 adantr R Rng S I S SubGrp R A E C B E D S LIdeal opp r R
64 25 simp3d R Rng S I S SubGrp R A E C B E D A - R C S
65 14 46 oppr0 0 R = 0 opp r R
66 14 1 opprbas X = Base opp r R
67 65 66 54 15 rnglidlmcl opp r R Rng S LIdeal opp r R 0 R S B X A - R C S B opp r R A - R C S
68 60 63 49 31 64 67 syl32anc R Rng S I S SubGrp R A E C B E D B opp r R A - R C S
69 57 68 eqeltrrd R Rng S I S SubGrp R A E C B E D A · ˙ B - R C · ˙ B S
70 22 subgsubcl S SubGrp R C · ˙ D - R C · ˙ B S A · ˙ B - R C · ˙ B S C · ˙ D - R C · ˙ B - R A · ˙ B - R C · ˙ B S
71 6 53 69 70 syl3anc R Rng S I S SubGrp R A E C B E D C · ˙ D - R C · ˙ B - R A · ˙ B - R C · ˙ B S
72 44 71 eqeltrrd R Rng S I S SubGrp R A E C B E D C · ˙ D - R A · ˙ B S
73 1 22 2 eqgabl R Abel S X A · ˙ B E C · ˙ D A · ˙ B X C · ˙ D X C · ˙ D - R A · ˙ B S
74 12 21 73 syl2an2r R Rng S I S SubGrp R A E C B E D A · ˙ B E C · ˙ D A · ˙ B X C · ˙ D X C · ˙ D - R A · ˙ B S
75 33 37 72 74 mpbir3and R Rng S I S SubGrp R A E C B E D A · ˙ B E C · ˙ D
76 75 ex R Rng S I S SubGrp R A E C B E D A · ˙ B E C · ˙ D