Step |
Hyp |
Ref |
Expression |
1 |
|
2idlcpblrng.x |
|
2 |
|
2idlcpblrng.r |
|
3 |
|
2idlcpblrng.i |
|
4 |
|
2idlcpblrng.t |
|
5 |
|
simpl1 |
|
6 |
|
simpl3 |
|
7 |
1 2
|
eqger |
|
8 |
6 7
|
syl |
|
9 |
|
simprl |
|
10 |
8 9
|
ersym |
|
11 |
|
rngabl |
|
12 |
11
|
3ad2ant1 |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
13 14 15 3
|
2idlelb |
|
17 |
16
|
simplbi |
|
18 |
17
|
3ad2ant2 |
|
19 |
18
|
adantr |
|
20 |
1 13
|
lidlss |
|
21 |
19 20
|
syl |
|
22 |
|
eqid |
|
23 |
1 22 2
|
eqgabl |
|
24 |
12 21 23
|
syl2an2r |
|
25 |
10 24
|
mpbid |
|
26 |
25
|
simp2d |
|
27 |
|
simprr |
|
28 |
1 22 2
|
eqgabl |
|
29 |
12 21 28
|
syl2an2r |
|
30 |
27 29
|
mpbid |
|
31 |
30
|
simp1d |
|
32 |
1 4
|
rngcl |
|
33 |
5 26 31 32
|
syl3anc |
|
34 |
25
|
simp1d |
|
35 |
30
|
simp2d |
|
36 |
1 4
|
rngcl |
|
37 |
5 34 35 36
|
syl3anc |
|
38 |
|
rnggrp |
|
39 |
38
|
3ad2ant1 |
|
40 |
39
|
adantr |
|
41 |
1 4
|
rngcl |
|
42 |
5 34 31 41
|
syl3anc |
|
43 |
1 22
|
grpnnncan2 |
|
44 |
40 37 33 42 43
|
syl13anc |
|
45 |
1 4 22 5 34 35 31
|
rngsubdi |
|
46 |
|
eqid |
|
47 |
46
|
subg0cl |
|
48 |
47
|
3ad2ant3 |
|
49 |
48
|
adantr |
|
50 |
30
|
simp3d |
|
51 |
46 1 4 13
|
rnglidlmcl |
|
52 |
5 19 49 34 50 51
|
syl32anc |
|
53 |
45 52
|
eqeltrrd |
|
54 |
|
eqid |
|
55 |
1 4 14 54
|
opprmul |
|
56 |
1 4 22 5 26 34 31
|
rngsubdir |
|
57 |
55 56
|
eqtrid |
|
58 |
14
|
opprrng |
|
59 |
58
|
3ad2ant1 |
|
60 |
59
|
adantr |
|
61 |
16
|
simprbi |
|
62 |
61
|
3ad2ant2 |
|
63 |
62
|
adantr |
|
64 |
25
|
simp3d |
|
65 |
14 46
|
oppr0 |
|
66 |
14 1
|
opprbas |
|
67 |
65 66 54 15
|
rnglidlmcl |
|
68 |
60 63 49 31 64 67
|
syl32anc |
|
69 |
57 68
|
eqeltrrd |
|
70 |
22
|
subgsubcl |
|
71 |
6 53 69 70
|
syl3anc |
|
72 |
44 71
|
eqeltrrd |
|
73 |
1 22 2
|
eqgabl |
|
74 |
12 21 73
|
syl2an2r |
|
75 |
33 37 72 74
|
mpbir3and |
|
76 |
75
|
ex |
|