| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2idlcpblrng.x |
|
| 2 |
|
2idlcpblrng.r |
|
| 3 |
|
2idlcpblrng.i |
|
| 4 |
|
2idlcpblrng.t |
|
| 5 |
|
simpl1 |
|
| 6 |
|
simpl3 |
|
| 7 |
1 2
|
eqger |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
simprl |
|
| 10 |
8 9
|
ersym |
|
| 11 |
|
rngabl |
|
| 12 |
11
|
3ad2ant1 |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
13 14 15 3
|
2idlelb |
|
| 17 |
16
|
simplbi |
|
| 18 |
17
|
3ad2ant2 |
|
| 19 |
18
|
adantr |
|
| 20 |
1 13
|
lidlss |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
eqid |
|
| 23 |
1 22 2
|
eqgabl |
|
| 24 |
12 21 23
|
syl2an2r |
|
| 25 |
10 24
|
mpbid |
|
| 26 |
25
|
simp2d |
|
| 27 |
|
simprr |
|
| 28 |
1 22 2
|
eqgabl |
|
| 29 |
12 21 28
|
syl2an2r |
|
| 30 |
27 29
|
mpbid |
|
| 31 |
30
|
simp1d |
|
| 32 |
1 4
|
rngcl |
|
| 33 |
5 26 31 32
|
syl3anc |
|
| 34 |
25
|
simp1d |
|
| 35 |
30
|
simp2d |
|
| 36 |
1 4
|
rngcl |
|
| 37 |
5 34 35 36
|
syl3anc |
|
| 38 |
|
rnggrp |
|
| 39 |
38
|
3ad2ant1 |
|
| 40 |
39
|
adantr |
|
| 41 |
1 4
|
rngcl |
|
| 42 |
5 34 31 41
|
syl3anc |
|
| 43 |
1 22
|
grpnnncan2 |
|
| 44 |
40 37 33 42 43
|
syl13anc |
|
| 45 |
1 4 22 5 34 35 31
|
rngsubdi |
|
| 46 |
|
eqid |
|
| 47 |
46
|
subg0cl |
|
| 48 |
47
|
3ad2ant3 |
|
| 49 |
48
|
adantr |
|
| 50 |
30
|
simp3d |
|
| 51 |
46 1 4 13
|
rnglidlmcl |
|
| 52 |
5 19 49 34 50 51
|
syl32anc |
|
| 53 |
45 52
|
eqeltrrd |
|
| 54 |
|
eqid |
|
| 55 |
1 4 14 54
|
opprmul |
|
| 56 |
1 4 22 5 26 34 31
|
rngsubdir |
|
| 57 |
55 56
|
eqtrid |
|
| 58 |
14
|
opprrng |
|
| 59 |
58
|
3ad2ant1 |
|
| 60 |
59
|
adantr |
|
| 61 |
16
|
simprbi |
|
| 62 |
61
|
3ad2ant2 |
|
| 63 |
62
|
adantr |
|
| 64 |
25
|
simp3d |
|
| 65 |
14 46
|
oppr0 |
|
| 66 |
14 1
|
opprbas |
|
| 67 |
65 66 54 15
|
rnglidlmcl |
|
| 68 |
60 63 49 31 64 67
|
syl32anc |
|
| 69 |
57 68
|
eqeltrrd |
|
| 70 |
22
|
subgsubcl |
|
| 71 |
6 53 69 70
|
syl3anc |
|
| 72 |
44 71
|
eqeltrrd |
|
| 73 |
1 22 2
|
eqgabl |
|
| 74 |
12 21 73
|
syl2an2r |
|
| 75 |
33 37 72 74
|
mpbir3and |
|
| 76 |
75
|
ex |
|