Metamath Proof Explorer


Theorem 2idlelbas

Description: The base set of a two-sided ideal as structure is a left and right ideal. (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses 2idlbas.i φ I 2Ideal R
2idlbas.j J = R 𝑠 I
2idlbas.b B = Base J
Assertion 2idlelbas φ B LIdeal R B LIdeal opp r R

Proof

Step Hyp Ref Expression
1 2idlbas.i φ I 2Ideal R
2 2idlbas.j J = R 𝑠 I
3 2idlbas.b B = Base J
4 1 2 3 2idlbas φ B = I
5 eqid LIdeal R = LIdeal R
6 eqid opp r R = opp r R
7 eqid LIdeal opp r R = LIdeal opp r R
8 eqid 2Ideal R = 2Ideal R
9 5 6 7 8 2idlelb I 2Ideal R I LIdeal R I LIdeal opp r R
10 9 simplbi I 2Ideal R I LIdeal R
11 1 10 syl φ I LIdeal R
12 4 11 eqeltrd φ B LIdeal R
13 9 simprbi I 2Ideal R I LIdeal opp r R
14 1 13 syl φ I LIdeal opp r R
15 4 14 eqeltrd φ B LIdeal opp r R
16 12 15 jca φ B LIdeal R B LIdeal opp r R