Database
BASIC ALGEBRAIC STRUCTURES
Ideals
Two-sided ideals and quotient rings
2idllidld
Next ⟩
2idlridld
Metamath Proof Explorer
Ascii
Unicode
Theorem
2idllidld
Description:
A two-sided ideal is a left ideal.
(Contributed by
Thierry Arnoux
, 9-Mar-2025)
Ref
Expression
Hypothesis
2idllidld.1
⊢
φ
→
I
∈
2Ideal
⁡
R
Assertion
2idllidld
⊢
φ
→
I
∈
LIdeal
⁡
R
Proof
Step
Hyp
Ref
Expression
1
2idllidld.1
⊢
φ
→
I
∈
2Ideal
⁡
R
2
eqid
⊢
LIdeal
⁡
R
=
LIdeal
⁡
R
3
eqid
⊢
opp
r
⁡
R
=
opp
r
⁡
R
4
eqid
⊢
LIdeal
⁡
opp
r
⁡
R
=
LIdeal
⁡
opp
r
⁡
R
5
eqid
⊢
2Ideal
⁡
R
=
2Ideal
⁡
R
6
2
3
4
5
2idlval
⊢
2Ideal
⁡
R
=
LIdeal
⁡
R
∩
LIdeal
⁡
opp
r
⁡
R
7
1
6
eleqtrdi
⊢
φ
→
I
∈
LIdeal
⁡
R
∩
LIdeal
⁡
opp
r
⁡
R
8
7
elin1d
⊢
φ
→
I
∈
LIdeal
⁡
R