Metamath Proof Explorer


Theorem 2idllidld

Description: A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypothesis 2idllidld.1 φ I 2Ideal R
Assertion 2idllidld φ I LIdeal R

Proof

Step Hyp Ref Expression
1 2idllidld.1 φ I 2Ideal R
2 eqid LIdeal R = LIdeal R
3 eqid opp r R = opp r R
4 eqid LIdeal opp r R = LIdeal opp r R
5 eqid 2Ideal R = 2Ideal R
6 2 3 4 5 2idlval 2Ideal R = LIdeal R LIdeal opp r R
7 1 6 eleqtrdi φ I LIdeal R LIdeal opp r R
8 7 elin1d φ I LIdeal R