Database
BASIC ALGEBRAIC STRUCTURES
Ideals
Two-sided ideals and quotient rings
2idlridld
Next ⟩
2idlss
Metamath Proof Explorer
Ascii
Unicode
Theorem
2idlridld
Description:
A two-sided ideal is a right ideal.
(Contributed by
Thierry Arnoux
, 9-Mar-2025)
Ref
Expression
Hypotheses
2idllidld.1
⊢
φ
→
I
∈
2Ideal
⁡
R
2idlridld.o
⊢
O
=
opp
r
⁡
R
Assertion
2idlridld
⊢
φ
→
I
∈
LIdeal
⁡
O
Proof
Step
Hyp
Ref
Expression
1
2idllidld.1
⊢
φ
→
I
∈
2Ideal
⁡
R
2
2idlridld.o
⊢
O
=
opp
r
⁡
R
3
eqid
⊢
LIdeal
⁡
R
=
LIdeal
⁡
R
4
eqid
⊢
LIdeal
⁡
O
=
LIdeal
⁡
O
5
eqid
⊢
2Ideal
⁡
R
=
2Ideal
⁡
R
6
3
2
4
5
2idlval
⊢
2Ideal
⁡
R
=
LIdeal
⁡
R
∩
LIdeal
⁡
O
7
1
6
eleqtrdi
⊢
φ
→
I
∈
LIdeal
⁡
R
∩
LIdeal
⁡
O
8
7
elin2d
⊢
φ
→
I
∈
LIdeal
⁡
O