Metamath Proof Explorer


Theorem 2idlridld

Description: A two-sided ideal is a right ideal. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses 2idllidld.1 φ I 2Ideal R
2idlridld.o O = opp r R
Assertion 2idlridld φ I LIdeal O

Proof

Step Hyp Ref Expression
1 2idllidld.1 φ I 2Ideal R
2 2idlridld.o O = opp r R
3 eqid LIdeal R = LIdeal R
4 eqid LIdeal O = LIdeal O
5 eqid 2Ideal R = 2Ideal R
6 3 2 4 5 2idlval 2Ideal R = LIdeal R LIdeal O
7 1 6 eleqtrdi φ I LIdeal R LIdeal O
8 7 elin2d φ I LIdeal O