Metamath Proof Explorer


Theorem 2idlss

Description: A two-sided ideal is a subset of the base set. Formerly part of proof for 2idlcpbl . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 20-Feb-2025) (Proof shortened by AV, 13-Mar-2025)

Ref Expression
Hypotheses 2idlss.b B = Base W
2idlss.i I = 2Ideal W
Assertion 2idlss U I U B

Proof

Step Hyp Ref Expression
1 2idlss.b B = Base W
2 2idlss.i I = 2Ideal W
3 2 eleq2i U I U 2Ideal W
4 3 biimpi U I U 2Ideal W
5 4 2idllidld U I U LIdeal W
6 eqid LIdeal W = LIdeal W
7 1 6 lidlss U LIdeal W U B
8 5 7 syl U I U B