Step |
Hyp |
Ref |
Expression |
1 |
|
2itscp.a |
|
2 |
|
2itscp.b |
|
3 |
|
2itscp.x |
|
4 |
|
2itscp.y |
|
5 |
|
2itscp.d |
|
6 |
|
2itscp.e |
|
7 |
2
|
recnd |
|
8 |
4
|
recnd |
|
9 |
7 8
|
subcld |
|
10 |
6 9
|
eqeltrid |
|
11 |
10
|
sqcld |
|
12 |
7
|
sqcld |
|
13 |
11 12
|
mulcld |
|
14 |
3
|
recnd |
|
15 |
1
|
recnd |
|
16 |
14 15
|
subcld |
|
17 |
5 16
|
eqeltrid |
|
18 |
17
|
sqcld |
|
19 |
15
|
sqcld |
|
20 |
18 19
|
mulcld |
|
21 |
|
2cnd |
|
22 |
17 15
|
mulcld |
|
23 |
10 7
|
mulcld |
|
24 |
22 23
|
mulcld |
|
25 |
21 24
|
mulcld |
|
26 |
13 20 25
|
addsubassd |
|
27 |
20 25
|
subcld |
|
28 |
13 27
|
addcomd |
|
29 |
17 15
|
sqmuld |
|
30 |
29
|
eqcomd |
|
31 |
30
|
oveq1d |
|
32 |
10 7
|
sqmuld |
|
33 |
32
|
eqcomd |
|
34 |
31 33
|
oveq12d |
|
35 |
26 28 34
|
3eqtrd |
|
36 |
|
binom2sub |
|
37 |
22 23 36
|
syl2anc |
|
38 |
35 37
|
eqtr4d |
|