Metamath Proof Explorer


Theorem 2iunin

Description: Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008)

Ref Expression
Assertion 2iunin x A y B C D = x A C y B D

Proof

Step Hyp Ref Expression
1 iunin2 y B C D = C y B D
2 1 a1i x A y B C D = C y B D
3 2 iuneq2i x A y B C D = x A C y B D
4 iunin1 x A C y B D = x A C y B D
5 3 4 eqtri x A y B C D = x A C y B D