Metamath Proof Explorer


Theorem 2lgslem1

Description: Lemma 1 for 2lgs . (Contributed by AV, 19-Jun-2021)

Ref Expression
Assertion 2lgslem1 P ¬ 2 P x | i 1 P 1 2 x = i 2 P 2 < x mod P = P 1 2 P 4

Proof

Step Hyp Ref Expression
1 2lgslem1a P ¬ 2 P x | i 1 P 1 2 x = i 2 P 2 < x mod P = x | i P 4 + 1 P 1 2 x = i 2
2 1 fveq2d P ¬ 2 P x | i 1 P 1 2 x = i 2 P 2 < x mod P = x | i P 4 + 1 P 1 2 x = i 2
3 ovex P 4 + 1 P 1 2 V
4 3 mptex y P 4 + 1 P 1 2 y 2 V
5 f1oeq1 f = y P 4 + 1 P 1 2 y 2 f : P 4 + 1 P 1 2 1-1 onto x | i P 4 + 1 P 1 2 x = i 2 y P 4 + 1 P 1 2 y 2 : P 4 + 1 P 1 2 1-1 onto x | i P 4 + 1 P 1 2 x = i 2
6 eqid P 4 + 1 P 1 2 = P 4 + 1 P 1 2
7 eqid y P 4 + 1 P 1 2 y 2 = y P 4 + 1 P 1 2 y 2
8 6 7 2lgslem1b y P 4 + 1 P 1 2 y 2 : P 4 + 1 P 1 2 1-1 onto x | i P 4 + 1 P 1 2 x = i 2
9 4 5 8 ceqsexv2d f f : P 4 + 1 P 1 2 1-1 onto x | i P 4 + 1 P 1 2 x = i 2
10 9 a1i P ¬ 2 P f f : P 4 + 1 P 1 2 1-1 onto x | i P 4 + 1 P 1 2 x = i 2
11 hasheqf1oi P 4 + 1 P 1 2 V f f : P 4 + 1 P 1 2 1-1 onto x | i P 4 + 1 P 1 2 x = i 2 P 4 + 1 P 1 2 = x | i P 4 + 1 P 1 2 x = i 2
12 3 10 11 mpsyl P ¬ 2 P P 4 + 1 P 1 2 = x | i P 4 + 1 P 1 2 x = i 2
13 prmz P P
14 13 zred P P
15 4re 4
16 15 a1i P 4
17 4ne0 4 0
18 17 a1i P 4 0
19 14 16 18 redivcld P P 4
20 19 flcld P P 4
21 20 adantr P ¬ 2 P P 4
22 oddm1d2 P ¬ 2 P P 1 2
23 13 22 syl P ¬ 2 P P 1 2
24 23 biimpa P ¬ 2 P P 1 2
25 2lgslem1c P ¬ 2 P P 4 P 1 2
26 eluz2 P 1 2 P 4 P 4 P 1 2 P 4 P 1 2
27 21 24 25 26 syl3anbrc P ¬ 2 P P 1 2 P 4
28 hashfzp1 P 1 2 P 4 P 4 + 1 P 1 2 = P 1 2 P 4
29 27 28 syl P ¬ 2 P P 4 + 1 P 1 2 = P 1 2 P 4
30 2 12 29 3eqtr2d P ¬ 2 P x | i 1 P 1 2 x = i 2 P 2 < x mod P = P 1 2 P 4