Metamath Proof Explorer


Theorem 2lgslem1a1

Description: Lemma 1 for 2lgslem1a . (Contributed by AV, 16-Jun-2021)

Ref Expression
Assertion 2lgslem1a1 P ¬ 2 P i 1 P 1 2 i 2 = i 2 mod P

Proof

Step Hyp Ref Expression
1 nnrp P P +
2 1 adantr P ¬ 2 P P +
3 elfzelz i 1 P 1 2 i
4 zre i i
5 2re 2
6 5 a1i i 2
7 4 6 remulcld i i 2
8 3 7 syl i 1 P 1 2 i 2
9 2 8 anim12ci P ¬ 2 P i 1 P 1 2 i 2 P +
10 elfznn i 1 P 1 2 i
11 nnre i i
12 nnnn0 i i 0
13 12 nn0ge0d i 0 i
14 0le2 0 2
15 5 14 pm3.2i 2 0 2
16 15 a1i i 2 0 2
17 mulge0 i 0 i 2 0 2 0 i 2
18 11 13 16 17 syl21anc i 0 i 2
19 10 18 syl i 1 P 1 2 0 i 2
20 19 adantl P ¬ 2 P i 1 P 1 2 0 i 2
21 elfz2 i 1 P 1 2 1 P 1 2 i 1 i i P 1 2
22 4 3ad2ant3 1 P 1 2 i i
23 zre P 1 2 P 1 2
24 23 3ad2ant2 1 P 1 2 i P 1 2
25 2pos 0 < 2
26 5 25 pm3.2i 2 0 < 2
27 26 a1i 1 P 1 2 i 2 0 < 2
28 lemul1 i P 1 2 2 0 < 2 i P 1 2 i 2 P 1 2 2
29 22 24 27 28 syl3anc 1 P 1 2 i i P 1 2 i 2 P 1 2 2
30 nncn P P
31 peano2cnm P P 1
32 30 31 syl P P 1
33 2cnd P 2
34 2ne0 2 0
35 34 a1i P 2 0
36 32 33 35 divcan1d P P 1 2 2 = P 1
37 36 adantr P ¬ 2 P P 1 2 2 = P 1
38 37 adantl 1 P 1 2 i P ¬ 2 P P 1 2 2 = P 1
39 38 breq2d 1 P 1 2 i P ¬ 2 P i 2 P 1 2 2 i 2 P 1
40 id i i
41 2z 2
42 41 a1i i 2
43 40 42 zmulcld i i 2
44 43 3ad2ant3 1 P 1 2 i i 2
45 nnz P P
46 45 adantr P ¬ 2 P P
47 zltlem1 i 2 P i 2 < P i 2 P 1
48 44 46 47 syl2an 1 P 1 2 i P ¬ 2 P i 2 < P i 2 P 1
49 48 biimprd 1 P 1 2 i P ¬ 2 P i 2 P 1 i 2 < P
50 39 49 sylbid 1 P 1 2 i P ¬ 2 P i 2 P 1 2 2 i 2 < P
51 50 ex 1 P 1 2 i P ¬ 2 P i 2 P 1 2 2 i 2 < P
52 51 com23 1 P 1 2 i i 2 P 1 2 2 P ¬ 2 P i 2 < P
53 29 52 sylbid 1 P 1 2 i i P 1 2 P ¬ 2 P i 2 < P
54 53 a1d 1 P 1 2 i 1 i i P 1 2 P ¬ 2 P i 2 < P
55 54 imp32 1 P 1 2 i 1 i i P 1 2 P ¬ 2 P i 2 < P
56 21 55 sylbi i 1 P 1 2 P ¬ 2 P i 2 < P
57 56 impcom P ¬ 2 P i 1 P 1 2 i 2 < P
58 modid i 2 P + 0 i 2 i 2 < P i 2 mod P = i 2
59 9 20 57 58 syl12anc P ¬ 2 P i 1 P 1 2 i 2 mod P = i 2
60 59 eqcomd P ¬ 2 P i 1 P 1 2 i 2 = i 2 mod P
61 60 ralrimiva P ¬ 2 P i 1 P 1 2 i 2 = i 2 mod P